Electronic Transfer of Geotechnical and Geoenvironmental Data

(Edition 3.1)

including addendum April 2005

2004

Published by Association of Geotechnical and Geoenvironmental Specialists

i

ACKNOWLEDGEMENTS

This document has been prepared by the Association of Geotechnical and Geoenvironmental Specialists (AGS) with the encouragement and support of the working party members. The AGS acknowledges the generous time and resources given to the project by the individual members and their employers. Without their enthusiastic support this ongoing project would not be possible.

Comment and feedback from the wider geotechnical industry has also been fundamental to the ongoing evolution of the AGS Format, ensuring that the needs of the geotechnical and geoenvironmental industry and its clients continue to be met.

Working Party Members

Jackie Bland Fugro Ltd / Geotechnics Ltd

Dominic Brightman Geotechnical and Environmental Associates (GEA)
Roger Chandler Key Systems Geotechnical Ltd / Keynetix Ltd

Mike Palmer Halcrow

Christopher Power
Syd Pycroft
Leonard Threadgold
David Toll

Mott MacDonald
Burohappold Ltd
Geotechnics Ltd
Durham University

Stephen Walthall (chairman) Bechtel

Peter Whittlestone Soil Mechanics (Mowlem Environmental Sciences Group)

Revised 2004 ISBN 0-9539846-2-1

©The Association of Geotechnical and Geoenvironmental Specialists, 1999 - 2004 All rights reserved.

Edition No. 3.1 December 2004

Amendments

Edition No.	Date of issue	Amendment	
03/92	March 1992	Original Issue	
07/94	July 1994	Rules, Appendix 1, Appendix 2 and Appendix 3 amended as marked in margin.	
3	November 1999	LIsted in Appendix 7 of Edition 3 document	
3.1	December 2004	See Appendix 7	
		Addendum issued March 2005, see Appendix 7	

Association of Geotechnical and Geoenvironmental Specialists

Forum Court

83 Copers Cope Road

Beckenham Kent BR3 1NR UNITED KINGDOM

Tel.: 020 8658 8212 Fax.: 020 8663 0949

Email: ags@geotechnical.demon.co.uk website: http://www.ags.org.uk

Although every effort has been made to check the accuracy of the information and validity of the guidance given in this document, neither the members of the Working Party nor the Association of Geotechnical and Geoenvironmental Specialists accept any responsibility for misstatements contained herein or misunderstanding arising here from.

FOREWORD

Foreword

The AGS Data Format subcommittee has monitored the use of the format within the industry since the launch of AGS 3 in 1999. The committee considers that it is now appropriate to issue AGS 3.1 to include the developments which have occurred over the last few years. In accordance with section 9 of the AGS 3 publication the majority of this document includes format additions requested by the industry.

There are no major changes from AGS 3 and therefore the committee have decided to call this Revision 1 of the AGS 3 format (AGS 3.1) rather than AGS 4. The changes in this revision are new fields, groups and pick list items all sitting within the AGS 3 framework.

AGS 3.1 is compliant with the rules in AGS 3 and therefore the ? remains in all new headings and groups even though these are now in common use.

This revision brings together AGS 3, the "The AGS-M Format - for the electronic transfer of monitoring data "published by AGS and CIRIA in 2002 and other groups and headings, which have been suggested on the AGS website and used by the industry.

Specifying and using the AGS 3.1 format requires that data that is appropriate for these new groups or fields is submitted in the stated format to prevent proliferation of various user defined groups and fields for the more conventional additional data types.

The changes within this revision are listed in Appendix 7 and are summarised below:

New groups. New groups have been added for the recording of Backfill information - ?BKFL, Depth Related Hole Information - ?HDPH, Monitoring Points - ?MONP (from AGS-M publication), Monitoring Point readings - ?MONR (from AGS-M publication), In situ Contamination testing - ?ICCT (from AGS-M publication), On site PID readings - ?IPID, Onsite FID readings - ?IFID, Time related remarks - ?TREM (from AGS-M publication).

New fields. New fields have been added to the following groups CBRT CLSS, , CNMT, CONG, CONS, DPRB, DPRG, DREM, FILE, HDIA HOLE, ICBR, IDEN, IPRM, IRDX, IRES, ISPT, IVAN, PROJ, SAMP, SHBT and TRIX. To improve clarity of labelling for emailed data and files stored on a server, additional fields have also been added in PROJ to include the information traditionally transmitted on the media labelling (Appendix 3).

Pick lists. A standard pick list has been supplied for the geology legend codes (GEOL_LEG) field. This field has always caused problems with AGS data as it is the only field that does not have a standard set of codes. Pick list items have also been added to six other fields (See Appendix 7 for full field details).

Codes. Additional determinand codes have been added to the CODE table as suggested by the users.

AGS Website. The AGS data format website has been updated to display all the additions in this document together will the appropriate guidance notes. The website also allows the visitor to view the field version history and an appropriate discussion thread or threads that have contributed to the changes.

A complete list of all additions, revisions and their history is available on the AGS web pages (http://www.ags.org.uk)

It is expected that all registered users will be able to use these additional headings for projects starting after March 2005 but this is solely up to the relevant project members to agree.

Steve Walthall Working Party Chairman

CONTENTS

ACKNOWLEDGEMENTS

FOREWORD

CONTENTS

- 1 INTRODUCTION
- 2 SCOPE
- 3 USER SUPPORT
- 4 PRESENTATION
- 5 CONCEPTS
 - 5.1 Base Data
 - 5.2 File Format
 - 5.3 Data Dictionary
 - 5.4 Groups and Fields
 - 5.5 Units
- 6 FILE SECURITY
 - 6.1 Labelling
 - 6.2 Virus Protection
- 7 PRELIMINARY AND FINAL DATA
- **8 MANAGEMENT**
- 9 UPDATING
- 10 RULES
 - 10.1 The Rules
 - 10.2 Notes on the Rules
 - 10.3 Group Hierarchy
- 11 DATA DICTIONARY
 - 11.1 Data Sets
 - 11.2 Units of Measurement
 - 11.3 Examples
 - 11.4 Notes
 - 11.5 Key to Change Control Used

CONTENTS

APPENDICES

APPENDIX 1 - Pick Lists – Groups ABBR, CODE and UNIT

APPENDIX 2 - Example AGS Format File

APPENDIX 3 - Security of Media

Media Labelling Media Index Record

APPENDIX 4 - Examples of General and Particular Specification Clauses with

Associated Notes for Guidance

APPENDIX 5 - AGS Format User Support

<u>APPENDIX 6</u> - Suggested Usage of the AGS Format

APPENDIX 7 - Summary of Amendments Contained within AGS Edition 3.1

1 INTRODUCTION

Prior to the establishment of the AGS Format, which has now been accepted by all components of the industry as being appropriate to data preparation, analysis, transfer and storage in electronic format, there was a proliferation of software systems that differed both in form and purpose even though much of their content was common. This was recognised by the Association of Geotechnical and Geoenvironmental Specialists (AGS) in 1991 and led to the setting up of a Working Party to establish an interchange format which allowed transfer of data between systems with minimal change to the systems themselves. The outcome of this work was embodied in the First Edition of this document. The Second and Third Editions were published in 1994 and 1999 respectively containing a series of updates and developments reflecting the ongoing needs of the industry.

Computer technology continues to advance and is now a fundamental part of the geotechnical industry. The producers of geotechnical and geoenvironmental data have adopted database systems for the efficient preparation and presentation of reports in printed format and the receivers for its analysis. Clearly, the transfer of data by electronic means to the receivers systems without the need for a printed interface helps to minimise costs, time and the potential for error. It also encourages more and better use of the data. However, much remains to be done to encourage the use of data in the electronic format, not only in site investigation but also in the design, bidding and construction phases of the project.

Most new systems for data recording and analysis now embody the AGS Format from inception. Once in place each system should be capable of interfacing with any other system which recognises the same format.

Whilst providing benefit in relation to data transfer, the AGS Format allows both producers and receivers to continue to use their own familiar forms and facilities and hence aids the implementation of quality assurance procedures. Storage and access to the data is rendered far more efficient and the establishment of data banks by producers, receivers and national bodies is facilitated.

This document continues the trend of updating the Format in response to industry requirements. The data format rules laid out in the Third Edition (1999) remain unchanged; however, the data dictionary has been updated to reflect the practicalities of data transfer and enhancements discussed on the web site. The main enhancements included in this edition are the inclusion of the groups to transfer monitoring data, developed as part of the AGS-M Format, and additions to the "pick lists" for standard items such as hole and sample types as well as chemical test determinands. The "pick lists" will be the subject to ongoing additions that will be posted on the web site on a periodic basis. Registered users of the AGS Format are automatically informed of any updates. The concept of Additional Groups and Fields was dropped in AGS 3 leaving only Key and Common categories.

2 SCOPE

The transmission by electronic media of most of the data currently presented on forms such as Borehole Records, Trial Pit Records, in situ Test Data and Laboratory Test Summaries, is considered a realistic objective. However, the transmission of **all** data, particularly from more complex testing, is not covered by this document.

Although the ability to record the descriptive introductory elements of a report on electronic media is considered desirable in order to provide compact storage, word processor functions such as tabulations, underlining and fonts could not be reproduced without the use of identical word processing packages by both producer and receiver. The format of the transmission of large bodies of text and drawings, if required, is covered by other means. However, the AGS Format now allows reference to these documents so that reports, drawings and photographs may also be transferred separately by electronic means.

3 USER SUPPORT

The benefits provided by Internet communications are now widely acknowledged. The AGS has therefore made provision on its web site not only for downloading of the document, but also for discussion boards so that user needs can be more readily identified. Similarly, any amendments can be immediately communicated to registered users. Further details are given in Appendix 5. The AGS web site can be found at http://www.ags.org.uk.

4 PRESENTATION

This document presents the AGS Format which should be adopted in conjunction with software used for the preparation of geotechnical and geoenvironmental data, its analysis and storage. It explains the concepts which have been used in preparing the format and the way in which it can be implemented in relation to future projects. The structure of data files is defined and examples are presented.

5 CONCEPTS

5.1 Base Data

In general, the files which are used should contain basic data such as exploratory hole records and the test data required to be reported by the relevant British Standards and other recognised documents and which would normally be contained within a Factual Report. Any calculated or interpreted data should be derived by the receiver, rather than being transferred within the data files.

5.2 File Format

The file format is intended to provide the widest possible level of acceptance and, in view of this, it is considered that the data should be transmissible using American Standard Code for Information Interchange (ASCII) files. The rules for creating Data Files are detailed in Section 10. They have been drawn up to enable the use of the AGS Format by the simplest existing programs, in particular spreadsheets, as well as more comprehensive database systems. An example AGS format file is given in Appendix 2.

5.3 Data Dictionary

In order to provide maximum flexibility and to allow the file formats to be more easily recognised by the non-specialist, the Data Dictionary approach has been adopted. The Data Dictionary can be compatible with a wide range of existing programs and should aid the structuring of future software. The Groups and Fields constituting the Data Dictionary are given in Section 11.

5.4 Groups and Fields

In order to structure the data in a consistent and logical manner it has been divided into Data Groups within which a series of Fields are defined. The Data Groups have been chosen to relate to specific elements of data which are obtained, such as project information, exploratory hole details and strata details. For data of a more complex nature it has been necessary to define two or more linked Data Groups.

Fields within each Data Group identify specific items such as stratum description, sample depth etc. They have been defined as having the status of **KEY** or **COMMON**.

Key Fields are necessary in order to define the data unambiguously. The Common Data Fields contain the associated data. The Data Fields and Data Groups listed are extensive and should cover the majority of requirements. However, rules are given for the creation of other Fields and Groups, should the need arise to transfer particular data not otherwise covered by the AGS Format. The AGS Format relies on strict adherence to the 'RULES' and the creation of additional Fields or Groups should be considered as a last resort.

It must also be recognised that there is a hierarchy of Groups, as most are reliant on others to maintain uniqueness of data. This hierarchy is defined in Section 10.3.

5.5 Units

Details of the default units to be used for each of the Data Fields are given in Section 11. These are the preferred units for each of the data dictionary definitions and should be used wherever possible. They will be either the appropriate SI units or the unit defined by the particular British Standard relating to that specific item of data. A "data units" field is included within the data set in accordance with the rules. It is recommended that these data units are used whenever possible in order to avoid potential confusion.

It is recognised that situations will occur where neither the SI unit nor the British Standard unit is being used. Provision is made for non-standard data units to be declared in the data transfer file. Reference should be made to Section 10.1; Rule 18 for the appropriate data format rules relating to non-standard units.

6 FILE SECURITY

6.1 Labelling

Clear labelling of files and media and conventions for its security and management are vital to the implementation of a practical system. These aspects are dealt with in Appendix 3.

6.2 Virus Protection

The transfer of data between computer systems can render the data vulnerable to attack by a virus. Precluding executable files from the data set reduces the risk of transfer of a virus. Proprietary virus scanning programs, of which there are a number commonly available, check the files for the presence of viruses. A virus-checking program should be used by the producer of the data to scan each data set medium prior to despatch and also by the receiver of the file before using it.

7 PRELIMINARY AND FINAL DATA

The data files are structured in order to allow the presentation of preliminary data as well as its updating during the course of a project, prior to issue of the final data. Preliminary data in electronic format can be useful on major projects where design is undertaken during the period of the investigation. However, the need for this facility needs to be very carefully considered by the receivers before including it in their Contract Specifications since it will require the imposition of rigorous management procedures. The highlighting of changes in data is considered to pose significant difficulties and hence preliminary data should be replaced by subsequent data and not merely updated by it. Where the highlighting of changes is required, this should be a facility incorporated in the receivers' software. This does not preclude submission of parts of the data on separate disks but the producer must ensure that the data within all separate issues are compatible, and that updates are carried through all sub-sets of the data. Each issue must be given a unique issue sequence number.

8 MANAGEMENT

In order to provide a framework, within which the data can be used, it is necessary to have specifications which fall into the following categories: -

National Specification General Specification Particular Specification

The National Specification is likely to include the general requirement for data in electronic format, whilst examples of General Specification clauses and Particular Specification clauses are presented in Appendix 4.

9 UPDATING

To meet the rapidly changing needs of its users the AGS Format must continue to develop. The publication of a First Edition in 1992, and a Second Edition in 1994, both in hard copy forms have achieved promulgation of changes. However, the broadening of the user base has required more flexibility for updating and dissemination of the amendments. It was therefore decided to make use of the AGS web site to publish the Third Edition and subsequent updates. Whilst placing the Format in open access on the web site permits more frequent updates, all changes are subject to rigorous control and notification procedures. Extensions to the Format will continue to be necessary from time to time but any modification cannot be considered to comply with the AGS format until it has been approved by the AGS. Further details are given in Appendix 5.

Any problems in the use of this format that may arise from time to time should be brought to the attention of the AGS via the discussion board on the AGS website. Problems with proprietary software, however, should be directed to the suppliers.

10 RULES

The Rules have been the subject of much discussion and these notes seek to explain the overall framework within which they are formulated.

A fundamental consideration has been that potential users of the Format should be able to use standard software tools to produce the data files. The spreadsheet is the most basic tool for the task, allowing data "tables" to be created and ASCII data files to be produced. Likewise, data files produced according to the Rules can be read directly by spreadsheet software. Although the Rules make it possible for users to manipulate AGS data files using spreadsheets alone, it is to be expected that more specific software will be used to automate the reading and writing of the data files. These software systems may range from simple data entry and edit programs through to complete database systems with data translation modules for AGS files.

Another fundamental point to bear in mind when assessing these Rules is that the resulting data file has been designed to be easy for the computer to read. The data files do not replace the printed reports which they accompany. However, the layout does allow data items to be readily identified should the need arise.

10.1 The Rules

The following rules must be used when creating an AGS Format file.

Rule 1

The data file shall be entirely composed of ASCII characters. The extended ASCII character set must not be used.

Rule 2

Each data file shall contain one or more data GROUPs. Each data GROUP contains related data.

Rule 3

Within each GROUP, data items are contained in data FIELDs. Each data FIELD contains a single data VARIABLE. Each line of the AGS Format file can contain several data FIELDs.

Rule 4

The order of data FIELDs on each line within a GROUP is defined at the head of each GROUP by a set of data HEADINGs.

Rule 5

Data HEADINGs and GROUP names must be taken from the approved Data Dictionary for data covered by these. In cases where there is no suitable entry, a user-defined HEADING may be used in accordance with Rules 21,22 and 23.

Rule 6

The data HEADINGs fall into one of 2 categories: KEY or COMMON

KEY fields <u>must</u> appear in each GROUP, but may contain null data (see Rule 15). KEY fields are necessary to uniquely define the data.

The following sub-rules apply to KEY fields and are required to ensure Data Integrity. (See Note 3)

Rule 6a

*HOLE_ID should always be the first field except in the **PROJ GROUP, where *PROJ_ID should be the first field. *HOLE_ID is also omitted from the **ABBR,**DICT, **CODE, **UNIT and **FILE GROUPs.

Rule 6b

There must not be more than one line of data in each GROUP with the same combination of KEY field entries.

Rule 6c

Within each project every data entry made in the KEY fields in any GROUP must have an equivalent entry in its PARENT GROUP.

e.g. All HOLES referenced in any GROUP must be defined in the **HOLE GROUP. See GROUP HIERARCHY TABLE in Section 10.3.

Rule 7

All data VARIABLEs can contain any alphanumeric data (i.e. both text and numbers). Numerical data should be in numerals. e.g. 10 not TEN. (See also Note 2).

Note that all numerals must be presented as a text field.

Rule 8

Data GROUP names, data field HEADINGs and data VARIABLEs must be enclosed in double quotes ("..."). e.g. for inches or seconds, (") must not appear as part of the data variable.

Rule 9

The data field HEADINGs and data VARIABLEs on each line of the data file should be separated by a comma (,).

Rule 10

Each GROUP name shall be preceded by 2 asterisks (**).

e.g. "**HOLE"

Rule 11

HEADINGs shall be preceded by 1 asterisk (*).

e.g. "*HOLE_ID"

Rule 12

No line of data HEADINGs or data VARIABLEs shall exceed 240 characters. The character count should include delimiting quotes and commas.

e.g. "*HOLE_ID","*HOLE_NATE" = 23 characters

Rule 13

A line of data HEADINGs exceeding 240 characters can be continued on immediately following lines. A data HEADING must not itself be split between lines. A comma must be placed at the end of a HEADINGs line that is to be continued.

```
e.g. "*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SPEC_REF",
"*CLSS_LL","*CLSS_PL","*CLSS_BDEN"
```

Rule 14

A line of data VARIABLEs exceeding 240 characters must be continued on immediately following lines. Data VARIABLEs can be split between lines. A VARIABLE continuation line shall begin with the special name <CONT> in place of the first data VARIABLE (PROJ_ID or HOLE_ID). The continued data is then placed in the correct field order by inserting the appropriate number of Null data VARIABLEs before it. Note that each line of data in a GROUP should contain the same number of VARIABLES. (See also Note 4).

```
e.g. "**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC","*GEOL_LEG"

"<UNITS>","m","m",""

"501","1.2","2.4","Very stiff brown CLAY with",""

"<CONT>","","","extremely closely spaced fissures","CLAY"
```


Rule 15

Null data VARIABLEs must be included as 2 consecutive double quotes (""). (See also Note 2)

```
e.g. ,"",
```

Rule 16

Data GROUPs can be repeated within a file with different HEADINGs.

Rule 17

The number of data HEADINGs per GROUP shall not exceed 60.

Rule 18

A UNITS line must be placed immediately after the HEADINGS line in all GROUPs except **ABBR, **CODE,**DICT and **UNIT. An entry must be made for each data VARIABLE. Null entries ("") must be used for data VARIABLES that are unitless, e.g. text. The line must begin with the special name <UNITS> in place of the first data variable (PROJ_ID or HOLE_ID).

(See also Note 5)

```
e.g. "**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC"

"<UNITS>","m","m",""
```

Rule 18a

A line of UNITS exceeding 240 characters can be continued on immediately following lines. A UNIT must not itself be split between lines. A comma must be placed at the end of a UNITS line that is to be continued.

```
e.g. "**GEOL"

"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC"

"<UNITS>","m",

"m",""
```

Rule 18b

Each data file shall contain the **UNIT GROUP. See Section 11 for the **UNIT GROUP defining the units used. This GROUP uses units defined in the 'pick' list in Appendix 1 which contains all the standard SI units used in all other AGS GROUPs, as well as some common non-SI equivalents. Every UNIT entered in a <UNITS> line of a GROUP, the CNMT_UNIT field of the **CNMT GROUP and the ?ICCT_UNIT field in the ?ICCT GROUP must be defined in the **UNIT GROUP. Both standard and non-standard UNITS must be defined in the **UNIT GROUP.

Rule 19

Each data file shall contain the **PROJ GROUP.

Rule 20

Each data file shall contain the **ABBR GROUP to define any data abbreviations where these have been used as data entries in the data GROUPs. This applies to standard abbreviations selected from the 'pick' lists in <u>Appendix 1</u> and user defined abbreviations.

Rule 21

Each file shall contain the **DICT GROUP to define non-standard GROUP and HEADING names where these have been used in the data GROUPs.

Rule 22

Each non-standard GROUP name shall contain the prefix **?.

A GROUP name shall not be more than 4 characters long excluding the **? prefix and shall consist of uppercase letters only.

```
e.g. "**?TESX"
```


Rule 23

Each non-standard HEADING shall contain the prefix *?.

A HEADING name shall not be more than 9 characters long excluding the *? prefix and shall consist of uppercase letters, numbers or the underscore character only. HEADING names shall start with the GROUP name followed by an underscore character, except for HEADINGs which duplicate a HEADING in another GROUP, in which case this HEADING shall be used instead.

e.g. "*?ISPT_CALN"

Rule 24

Miscellaneous computer files (e.g. digital images) may be included with a data file. Each such file should be defined in a **FILE GROUP. File names shall not contain more than 8 characters in the main body and not more than 3 characters in the extension.

Correct example: FNAME.XLS Incorrect example: A LONG NAME.XYZ

Rule 25

Every data file that contains a **CNMT or **?ICCT GROUP for chemical test results must also contain a **CODE GROUP that defines the codes used for each determinand given in the CNMT_TYPE field of the **CNMT or **?ICCT GROUP. This applies to standard codes selected from the 'pick' lists in Appendix 1 and user defined codes.

10.2 Notes on the Rules

The following notes explain some points of detail in the Rules.

Note 1

ASCII 'CSV' Files

The Rules define ASCII data files of a type commonly referred to as CSV (Comma Separated Value). This type of file is produced and read by some spreadsheet (and other) systems. The data items are separated by commas and are surrounded by quotes (").

Note 2

Numeric and Character Data - Delimiters

The Rules permit any Data Field to contain text, since this allows characters in numeric fields and caters for those countries which use the comma in place of the decimal point. For these reasons ALL Data Fields must be surrounded by quotes.

Note that most spreadsheet and database systems provide a VALUE() function (or similar) to convert text data to numeric data. This function can be used where calculations need to be carried out on data imported from AGS files.

Note 3

Key and Common Fields

The Data Fields defined by the Format fall into one of two categories:

KEY Fields must be included every time a Data Group appears in a data file. COMMON Fields are all other fields.

KEY Fields are important for maintaining data integrity. Without this the receiving software may not be able to use the data in a meaningful way.

For the purpose of creating AGS files this means that data entered into KEY Fields must be unique in each GROUP and that the corresponding entries are made in the PARENT GROUP. See GROUP HIERARCHY TABLE (Section 10.3).

Note 4 Continuation Lines

It should be noted that some spreadsheets impose a finite limit (e.g. 240) on the number of characters within a single Data Field. The Rules define a scheme for producing continuation lines where there are long Data Fields. Although the scheme may seem complex at first sight, it is the system automatically produced by spreadsheets if the long data items are continued on additional rows IN THE SAME DATA COLUMN. Similarly, these Data Files will read into spreadsheets and preserve the long data items in their correct column order, for any length of data. The special <CONT> symbol must appear in the HOLE_ID Field, and thus <CONT> should never be used as a HOLE ID.

Note 5 Units

Note that a UNITS line must be included in every GROUP (except ABBR, CODE, DICT and UNIT) even where the default units are used.

Details of the default units to be used for each of the Data Fields are given in the Data Groups below. These are the preferred units for each of the data dictionary definitions and should be used wherever possible. They will either be the appropriate SI units or the unit defined by the particular British Standard relating to that specific item of data. It is recognised that situations will occur where neither the SI unit nor the British Standard unit are being used. All entries in the <UNITS> line must be defined in the **UNIT GROUP.

10.3 Group Hierarchy

The AGS Format Data Groups are organised in a hierarchy with an inverted tree like structure. At the top of the tree is the HOLE Group, and all other Groups lie below this. One of the Groups immediately below HOLE is SAMP, all the laboratory testing Groups lie below SAMP. HOLE is termed the "parent" Group of SAMP. Each Group has only one parent, but there can be many Groups below each parent. Each Group is linked to its parent (the Group above it in the hierarchy) by Key Fields. Equally, each Group is linked to the Group(s) below it by Key Fields. For this structure to work, and the link to be made correctly between related Groups, the data in the Key Fields must be consistent and unique. If a Data Group is included in an AGS submission, its parent Group must also be included, and this applies all the way up to the top of the tree. Therefore the HOLE Group must always be present and if there is any laboratory testing the SAMP Group must be present.

The following table defines the Group hierarchy by indicating the parent for each Group. The Key Fields that create the link between these Groups are indicated in the Data Dictionary below.

There are six Groups that are not part of this hierarchy. The PROJ, ABBR, CODE, DICT, FILE and UNIT Groups sit above the tree, and each have a general purpose. The PROJ, ABBR and UNIT Groups must always be included in an AGS Format submission as they define the project, the abbreviations and the units used within the Groups. The CODE Group must be included if the CNMT Group is used for chemical test results, as the CODE Group defines the determinand codes used within CNMT. The DICT Group must be included if any user defined Groups or Fields are present. The FILE Group must be included if any associated files (non-AGS format files) are included in the submission.

Group Name	Contents	Parent Group	
ABBR	Abbreviation Definitions	-	Re
?BKFL	Backfill Details	HOLE	Ne
CBRG	CBR Test - General	SAMP	Re
CBRT	CBR Test	CBRG	Re
CDIA	Casing Diameter by Depth	HOLE	
CHEM	Chemical Tests	SAMP	De
CHIS	Chiselling Details	HOLE	
CHLK	Chalk Tests	SAMP	
CLSS	Classification Tests	SAMP	Re
CMPG	Compaction Tests General	SAMP	Re
CMPT	Compaction Tests	CMPG	
CNMT	Contaminant and Chemical Testing	SAMP	Re
CODE	Chemical Testing Codes	-	
CONG	Consolidation Test - General	SAMP	Re
CONS	Consolidation Test	CONG	Re
CORE	Rotary Core Information	HOLE	
DETL	Stratum Detail Descriptions	HOLE	
DICT	User Defined Groups and Headings	-	
DISC	Discontinuity Data	HOLE	
DPRB	Dynamic Probe Test	DPRG	Re
DPRG	Dynamic Probe Test - General	HOLE	Re
DREM	Depth Related Remarks	HOLE	Re
FILE	Associated Files	-	Re
FLSH	Rotary Core Flush Details	HOLE	
FRAC	Fracture Spacing	HOLE	
FRST	Frost Susceptibility	SAMP	
GAST	Gas Constituents	SAMP	De
GEOL	Stratum Descriptions	HOLE	
GRAD	Particle Size Distribution Analysis Data	SAMP	
HDIA	Hole Diameter by Depth	HOLE	
?HDPH	Depth Related Drilling Information	HOLE	Ne
HOLE	Hole Information	-	Re
HPGI	Horizontal Profile Gauge Installation Details	HOLE	
HPGO	Horizontal Profile Gauge Observations	HPGI	
ICBR	In Situ CBR Test	HOLE	Re
?ICCT	In Situ Contaminant and Chemical Testing	?MONP	Ne
IDEN	In Situ Density Test	HOLE	Re
?IFID	On Site Volatile Headspace Testing Using Flame Ionisation Detector	HOLE	Ne
INST	Single Point Instrument Installation Details	HOLE	
IOBS	Single Point Instrument Readings	INST	
?IPID	On Site Volatile Headspace Testing by Photo Ionisation Detector	HOLE	Ne
IPRM	In Situ Permeability Test	HOLE	R

Group Name	Contents	Parent Group	
IRDX	In Situ Redox Test	HOLE	Rev
IRES	In Situ Resistivity Test	HOLE	Rev
ISPT	Standard Penetration Test Results	HOLE	Rev
IVAN	In Situ Vane Test	HOLE	Rev
MCVG	MCV Test - General	SAMP	
MCVT	MCV Test	MCVG	
?MONP	Monitor Point	HOLE	New
?MONR	Monitor Point Reading	?MONP	<i>N</i> eи
POBS	Piezometer Readings	PREF	
PREF	Piezometer Installation Details	HOLE	
PROB	Profiling Instrument Readings	PROF	
PROF	Profiling Instrument Installation Details	HOLE	
PROJ	Project Information	-	Rev
PRTD	Pressuremeter Test Data	PRTG	
PRTG	Pressuremeter Test Results, General	HOLE	
PRTL	Pressuremeter Test Results, Individual Loops	PRTG	
PTIM	Hole Progress by Time	HOLE	
PTST	Laboratory Permeability Tests	SAMP	
PUMP	Pumping Test	HOLE	
RELD	Relative Density Test	SAMP	
ROCK	Rock Testing	SAMP	Rev
SAMP	Sample Reference Information	HOLE	
SHBG	Shear Box Testing - General	SAMP	
SHBT	Shear Box Testing	SHBG	Rev
STCN	Static Cone Penetration Test	HOLE	
SUCT	Suction Tests	SAMP	
TNPC	Ten Per Cent Fines	SAMP	
?TREM	Time Related Remarks	HOLE	New
TRIG	Triaxial Test - General	SAMP	
TRIX	Triaxial Test	TRIG	Rev
UNIT	Definition of <units> and CNMT_UNIT</units>	-	
WETH	Weathering Grades	HOLE	
WSTK	Water Strike Details	HOLE	

See Section 11 for definitions of New, Rev and Del

11 DATA DICTIONARY

11.1 Data Sets

This Section defines the data dictionary entries for the Data Groups with their associated Key and Common Data Fields

The status of the individual Data Fields is shown by

Status Symbol

KEY *

COMMON

11.2 Units of Measurement

The units of measurement shall be those given in the UNITS line. The preferred units are defined. The unit of measurement shall not be included in the ASCII Data Field.

11.3 Examples

Typical examples are given against most of the Data Fields to indicate the type of information which may be expected. They are not intended to be representative of any one soil or rock and hence may not be mutually compatible.

11.4 Notes

See <u>Appendix 1</u> for a list of the standard abbreviations to be used in the indicated fields. Other abbreviations may be defined as required, see Rules 20 and 25.

11.5 Key to Change Control Used

New New Field or Group in Edition 3.1

Rev Revised from Edition 3

Del Field or Group maintained for backward compatibility. Its use should be discontinued. It will be deleted in the next edition of the AGS Format, as the data is contained in other Groups.

Group N	Group Name : PROJ - Project Information				
Status	Heading	Unit	Description	Example	
*	PROJ_ID		Project identifier	6421/A	
	PROJ_NAME		Project title	Acme Gas Works	
	PROJ_LOC		Location of site	London Road, Croydon	
	PROJ_CLNT		Client name	Acme Enterprises	
	PROJ_CONT		Contractors name	Acme Drilling Ltd	
	PROJ_ENG		Project Engineer	Acme Consulting	
	PROJ_MEMO		General project comments		
	PROJ_DATE	dd/mm/yyyy	Date of production of data	31/07/1999	
	?PROJ_CID		Monitoring Contractor Identifier	KS123	٨
	?PROJ_PROD		Data file producer	Acme Drilling Ltd	٨
	?PROJ_RECV		Data file recipient	Acme Consulting	٨
	?PROJ_ISNO		Issue sequence number	2	٨
	?PROJ_STAT		Status of data within submission	Draft	۸
	PROJ_AGS		AGS Edition Number	3.1	F
	FILE_FSET		Associated file reference	FS1	

- ?PROJ_CID field has been added to included AGS-M format groups and headings (ref CIRIA Project Report 82, 2002)
- ?PROJ_PROD, ?PROJ_RECV and ?PROJ_ISNO have been added to provide facility to include the information traditionally transmitted on the media labelling (Appendix 3) within the AGS format data file. This provides additional file status data when the file is transmitted electronically such as by email.
- ?PROJ_STAT allows the data producer to identify the overall status of the data contained within the data file submission to advise the data receiver of any restrictions on the data use or quality (see also <u>?HOLE_STAT</u>).

Group N	Group Name : ABBR - Abbreviation Definitions				
Status	Heading	Unit	Description	Example	
*	ABBR_HDNG		Field Heading in Group	HOLE_TYPE	
*	ABBR_CODE		Abbreviation used	TP	ŀ
	ABBR_DESC		Description of Abbreviation	Trial Pit	

- Correction of typographical error. ABBR_CODE should be marked as Key.
- Appendix 1 lists the standard abbreviations.
- Further notes on standard and user defined abbreviations are provided in Appendix 6 Section 7.

Froup N	roup Name : ?BKFL - Backfill Details				
Status	Heading	Unit	Description	Example	
*	?HOLE_ID		Exploratory hole or location equivalent	6422/A	Ne
*	?BKFL_TOP	m	Depth to top of section	1.4	Ne
	?BKFL_BASE	m	Depth to base of section	11.4	Ne
	?BKFL_LEG		Backfill legend code	905 (See Appendix 1)	Ne
	?BKFL_DATE	dd/mm/yyyy	Date of backfill	01/04/2004	Ne
	?BKFL_REM		Backfill Remarks	Arisings	Ne
	?FILE_FSET		Associated file reference	FS20	Ne

- The details of exploratory hole backfill should be detailed in the ?BKFL group. Backfill materials should be uniquely listed by the Hole Identifier and the top depth of the material in the hole.
- The materials used to backfill holes will be coded using the ?BKFL_LEG. Additional descriptive terms could be included in ?BKFL_REM as required.
- All items that appear in ?BKFL_LEG need to have an appropriate entry in the ABBR group (see <u>Appendix 1</u>).

Froup N	lame : CBRG	- CE	BR Test – General		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6491/A	Re
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	22	
*	SAMP_TYPE		Sample type	LB (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	6.50	
	CBRG_COND		Sample condition	Undisturbed, Remoulded etc	
	CBRG_METH		Method of remoulding	Heavy compaction	
	CBRG_REM		Notes on CBR test	Natural, soaked, duration of soaking, 10kN/m2 surcharge	Re
	CBRG_NMC	%	Natural moisture content	20	
	?CBRG_IMC	%	Initial moisture content	21	Ne
	CBRG_2ØØ	%	Weight percent retained on 20mm sieve	10	1
	CBRG_SWEL	mm	Amount of total swell recorded	3.0	R
	FILE_FSET		Associated file reference	FS16	

- Example for CBRG_REM in Edition 3 erroneously indicated the use of a superscript character. Example updated to comply with Rule 1.
- CBR swell has been more accurately described as the total swelling recorded during the CBR test. ?CBRT_SWEL has been added to the CBRT group so that the swelling for each stage can be included in the data as appropriate.
- ?CBRG_IMC allows the initial moisture content of the CBR test sample to be recorded which may differ from the natural content especially of the sample is pre-soaked.
- Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group Name : CBRT		: CBRT - CBR Test			
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6491/A	
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	22	
*	SAMP_TYPE		Sample type	LB (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	6.50	
*	CBRT_TESN		CBR test number	1	
	CBRT_TOP	%	CBR at top	6.4	
	CBRT_BOT	%	CBR at bottom	5.2	
	CBRT_MCT	%	Moisture content at top	15	
	CBRT_MCBT	%	Moisture content at bottom	14	
	CBRT_BDEN	Mg/m3	Bulk density	1.84	
	CBRT_DDEN	Mg/m3	Dry density	1.60	
	?CBRT_SWEL	mm	Amount of swell recorded	3.0	
	?CBRT_REM		Test specific remarks		

- ?CBRT_SWEL should be used to report the amount of swelling recorded on the specimen in each test.
- ?CBRT_REM allows commentary for the addition of test specific remarks. For example, where CBR is tested at natural moisture content, natural moisture content +2% and natural moisture content -2% or to include details of whether curve correction was applied.
- Further notes on laboratory test results are provided in Appendix 6 Section 5.

Group Name : CDIA		- Cas	sing Diameter by Depth		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Rev
*	CDIA_CDEP	m	Depth achieved at CDIA_HOLE	18.0	
*	CDIA_HOLE	mm	Casing Diameter	200	Rev
	CDIA_REM		Remarks		

Notes for Guidance

• CDIA_HOLE now defined as a Key Field to allow two casings of different diameter that finish at the same depth to be uniquely referenced.

Del

Group Name : CHEM -**Chemical Tests**

Provision for reporting of this data is included in groups CNMT and ?ICCT. These groups should be used as appropriate in preference.

Group CHEM will be deleted from future editions. N.B.

Status	Heading	Unit	Description	Example	
<u>*</u>	HOLE_ID		Exploratory hole or location equivalent	6421/A	Del
<u>*</u>	SAMP_TOP	m	Depth to TOP of test sample	6.50	Del
<u>*</u>	SAMP_REF		Sample reference number	12	Del
<u>*</u>	SAMP_TYPE		Sample type	U (See Appendix 1)	Del
<u>*</u>	SPEC_REF		Specimen reference number	1	Del
<u>*</u>	SPEC_DPTH	m	Specimen depth	6.60	Del
	CHEM_TSUL	%	Total soil or rock sulphate content	0.06	Del
	CHEM_ASUL	g/l	Sulphate aqueous extract 2:1 soil/water	0.17	Del
	CHEM_WSUL	g/l	Water sulphate content	0.01	Del
	CHEM_TSUD	%	Total soil or rock sulphur content	0.04	De
	CHEM_PH		Soil/water pH value	7.2	Dei
	CHEM_REM		Remarks		Del
	CHEM_ORGM		Method of organic test	Dichromate	Del
	CHEM_ORG	%	Organic matter content	12	Dei
	CHEM_020	%	Percentage passing 2mm sieve	80	Dei
	CHEM_LOI	%	Mass loss on ignition	26	Dei
	CHEM_CO2M		Method of carbonate test		De
	CHEM_CO2	%	Carbonate content (as CO ₂)	15	De
	CHEM_ACL	%	Percentage of acid soluble chloride ions	0.1	De
	CHEM_WCL	%	Percentage of water soluble chloride ions	0.05	De
	CHEM_DCL	mg/l	Dissolved chloride ions	70	De
	CHEM_CLN		Notes on chloride test		De
	CHEM_TDSM		Total dissolved solids, test method and notes		De
	CHEM_TDS	%	Total dissolved solids in water	1.0	De
	CHEM_RESM		Resistivity test method		Del
	CHEM_RES	ohm	Resistivity of soil sample corrected to 20 degrees C	2000	Del
	CHEM_REMC	%	Moisture content of sample for resistivity	11.0	Del
	CHEM_REBD	Mg/m3	Bulk density of sample for resistivity	2.10	Dei
	CHEM_RDXM		Redox test information		De
	CHEM_RDX		Redox potential	400	Del
	CHEM_RDPH		pH of redox sample	7.0	Del

Group Name : CHIS - Chis			selling Details		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	R
*	CHIS_FROM	m	Depth at start of chiselling	5.20	
	CHIS_TO	m	Depth at end of chiselling	5.35	
	CHIS_TIME	hhmm	Time taken	0030	
	CHIS_TOOL		Chiselling tool used	Shell	
	CHIS_REM		Chiselling notes	Chiselling sandstone boulder	

Group N	Name : CHLK	- Ch	alk Tests			
Status	Heading	Unit	Description	Example	1	
*	HOLE_ID		Exploratory hole or location equivalent	6131/A		
*	SAMP_TOP	m	Depth to TOP of test sample	2.50		
*	SAMP_REF		Sample reference number	10		
*	SAMP_TYPE		Sample type	LB (See Appendix 1)		
*	SPEC_REF		Specimen reference number	2		
*	SPEC_DPTH	m	Specimen Depth	2.50		
*	CHLK_TESN		Chalk crushing test number	1		
	CHLK_CCV		Chalk crushing value as BS 1377 Part 4 Cl 6	3.5		
	CHLK_MC	%	Chalk natural moisture content	20		
	CHLK_SMC	%	Chalk saturated moisture content	25		
	CHLK_Ø1Ø	%	Weight percent of material retained on 10mm sieve			
	CHLK_REM		Remarks			
	CHLK_CARB	%	Chalk calcium carbonate content	42		
	FILE_FSET		Associated file reference	FS21		

Group Name : CLSS		- Classification Tests			
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	F
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	1	
*	SPEC_DPTH	m	Specimen depth	6.60	
	CLSS_NMC	%	Natural moisture content	57	
	CLSS_LL	%	Liquid limit	62	
	CLSS_PL	%	Plastic limit	38 or NP	
	CLSS_BDEN	Mg/m3	Bulk density	1.66	
	CLSS_DDEN	Mg/m3	Dry density	1.06	
	CLSS_PD	Mg/m3	Particle density	2.65	F
	CLSS_425	%	Percentage passing 425 μm sieve	12	
	CLSS_PREP		Method of preparation	Wet sieve etc	
	CLSS_SLIM	%	Shrinkage limit	17	
	CLSS_LS	%	Linear shrinkage	11	
	CLSS_HVP	kN/m2	Hand vane undrained shear strength (peak)	40	
	CLSS_HVR	kN/m2	Hand vane undrained shear strength (remoulded)	15	
	CLSS_PPEN	kN/m2	Pocket penetrometer undrained shear strength	40	
	CLSS_VNPK	kN/m2	Laboratory vane undrained shear strength (peak)	35	
	CLSS_VNRM	kN/m2	Laboratory vane undrained shear strength (remoulded)	25	
	?CLSS_REM		Notes on classification testing	1 point liquid limit test	
	?FILE_FSET		Associated file reference	FS231	

- The standard units for CLSS_PD have been added as Mg/m3.
- ?CLSS_REM has been included to provide for additional pertinent information.
- ?FILE_FSET has been added to permit associated files to be appended to classification test data if required.

Group Name : CMPG -			·		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	
*	SAMP_TOP	m	Depth to TOP of test sample	7.50	
*	SAMP_REF		Sample reference number	15	
*	SAMP_TYPE		Sample type	LB (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	7.50	
	CMPG_TYPE		Compaction test type	2.5kg, 4.5kg or vibro	
	CMPG_MOLD		Compaction mould type	Standard or CBR	
	CMPG_375	%	Weight percent of material retained on 37.5mm sieve	7	
	CMPG_2ØØ	%	Weight percent of material retained on 20mm sieve	15	
	CMPG_PDEN	Mg/m3	Particle density measured or assumed (#)	#2.65	
	CMPG_MAXD	Mg/m3	Maximum dry density	2.06	
	CMPG_MCOP	%	Moisture content at maximum dry density	14	
	CMPG_REM		Notes on compaction test required under BS 1377: 1990		
	FILE_FSET		Associated file reference	FS23	

- Edition 3 publication erroneously showed a field named CMPG_FSET for the Associated file reference data. This should have been printed as FILE_FSET.
- The standard units for CMPG_PDEN have been added as Mg/m3.
- Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group Name : CMPT - Compaction Tests					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	F
*	SAMP_TOP	m	Depth to TOP of test sample	7.50	
*	SAMP_REF		Sample reference number	15	
*	SAMP_TYPE		Sample type	LB (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	7.50	
*	CMPT_TESN		Compaction point number	1	
	CMPT_MC	%	Moisture content	7.8	
	CMPT_DDEN	Mg/m3	Dry density at CMPT_MC moisture content	1.85	

Notes for Guidance

• Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

-	Name:CNMT in situ measureme		ontaminant and Chemical Testing ring of contamination and chemicals shoud be recorde	ed in Group ?ICCT	
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	R
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	ES (See Appendix 1)	
*	SPEC_REF		Specimen reference number	4	
*	SPEC_DPTH	m	Specimen depth	6.90	
*	CNMT_TYPE		Determinand	CL (See Appendix 1)	
*	CNMT_TTYP		Test type	SOLID_WAT (See Appendix 1)	
	CNMT_RESL		Test result		
	CNMT_UNIT		Test result units	(See Appendix 1)	
	CNMT_CAS		Chemical Abstract Service registry number (where appropriate)		
	CNMT_METH		Test method		
	CNMT_PREP		Sample preparation	Air dried	
	CNMT_REM		Comments on test		
	CNMT_LIM		Method lower detection limit		F
	?CNMT_ULIM		Method upper detection limit		۸
	CNMT_NAME		Client/laboratory preferred name of determinand	Dry weight Chloride	
	CNMT_LAB		Name of testing laboratory/Organisation	Chemical Test House	
	CNMT_CRED		Accrediting body (When appropriate)	UKAS	
	?CNMT_LBID		Laboratory Internal Reference	LB234675	۸
-	FILE_FSET		Associated file reference	FS22	

AGS

- Additional CNMT_TYPE codes have been added to those listed in <u>Appendix 1</u> to increase the range of standard determinands. Further codes will be necessary to include other less common determinands. These should be included in the CNMT_TYPE data and appended to the CODE group in any AGS data format files as required and posted to the website discussion board (http://www.ags.org.uk).
- To more completely define the detection limits of the test method the ?CNMT_ULIM heading has been added
 to contain the upper detection limit where applicable and the existing CNMT_LIM field has been redefined to
 be the lower detection limit.
- ?CNMT_LBID can be used by the laboratory testing house to include their sample/test reference.
- Units included under the CNMT_UNIT heading should be fully defined in the UNIT group (<u>Appendix 6 Section 6</u>).
- More details on reporting chemical testing are provided in Appendix 6 Section 15.

Group Name : CODE - Chemical Testing Codes							
Status	Heading	Unit	Description	Example			
*	CODE_CODE		Code	CL			
	CODE_DESC		Code Description	Chloride			

Group N	lame : CONG	- Cor	nsolidation Test - General		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	F
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	4	1
*	SPEC_DPTH	m	Specimen depth	6.90	1
	CONG_TYPE		Oedometer or Rowe, primary or secondary consolidation	Oed, Rowe	
	CONG_COND		Sample condition	Undisturbed, remoulded etc	
	CONG_REM		Test details including method statement	Temperature 21 degrees C, sample from base of U100 sample, axis vertical	1
	CONG_INCM	m2/MN	Coefficient of volume compressibility over CONG_INCD	0.36	1
	CONG_INCD	kN/m2	Defined stress range	100 to 200	1
	CONG_DIA	mm	Test specimen diameter	75	1
	CONG_HIGT	mm	Test specimen height	19	1
	CONG_MCI	%	Initial moisture content	21	1
	CONG_MCF	%	Final moisture content	18	1
	CONG_BDEN	Mg/m3	Initial bulk density	2.12	1
	CONG_DDEN	Mg/m3	Initial dry density	1.75	1
	CONG_PDEN	Mg/m3	Particle density (BS 1377) with # if assumed	#2.65	1
	CONG_SATR	%	Initial degree of saturation	98	
	CONG_SPRS	kN/m2	Swelling pressure	100	1
	CONG_SATH	%	Height change of specimen on saturation as percentage of original height	+1.1	
	FILE_FSET		Associated file reference	FS9	1
	?CONG_IVR		Initial voids ratio	0.80	١,

AGS

- ?CONG_IVR should be used to report the initial voids ratio at the start of testing.
- The standard units for CONG _PDEN have been added as Mg/m3 and the example for CONG_INCD modified.
- Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group N	lame : CONS	- Con	solidation Test		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	Rev
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	•
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	4	•
*	SPEC_DPTH	m	Specimen depth	6.90	
*	CONS_INCN		Oedometer stress increment number	3	
	CONS_IVR		Voids ratio at start of increment	0.80	Rev
	CONS_INCF	kN/m2	Stress at end of stress increment/decrement	400	
	CONS_INCE		Voids ratio at end of stress increment	0.62	
	CONS_INMV	m2/MN	Reported coefficient of volume compressibility over stress increment	0.32	Rev
	CONS_INCV	m2/yr	Reported coefficient of consolidation over stress increment	4.12	Rev
	CONS_INSC		Coefficient of secondary compression over stress increment	0.12	
	?CONS_CVRT	m2/yr	Coefficient of consolidation determined by the root time method	2.10	New
	?CONS_CVLG	m2/yr	Coefficient of consolidation determined by the log time method	4.12	New
	?CONS_REM		Remarks including method used to determine coefficients reported under CONS_INMV and selected CONS_INCV (from either of ?CONS_CVRT or ?CONS_CVLG)	Log time method reported	New

- CONS_IVR description clarified to the voids ratio at the start of the increment rather than repeat the initial voids ratio on each record in the CONS group as listed in previous editions.
- CONS_INMV and CONS_INCV should contain the reported coefficients as shown on test report or certificates. ?CONS_REM has been added to allow the method used to determine the coefficient to be stated for clarity.
- Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group N	roup Name : CORE - Rotary Core Information				
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6423/A	
*	CORE_TOP	m	Depth to TOP of core run	2.54	
*	CORE_BOT	m	Depth to BOTTOM of core run	3.54	
	CORE_PREC	%	Percentage of core recovered in core run (TCR)	32	
	CORE_SREC	%	Percentage of solid core recovered in core run (SCR)	23	
	CORE_RQD	%	Rock Quality Designation for core run (RQD)	20	
	CORE_REM		Rotary remarks	Rods dropped 200mm at 3.10m	
	CORE_DIAM	mm	Core diameter	75	
	FILE_FSET		Associated file reference	FS5	

Group N	Group Name : DETL - Stratum Detail Descriptions					
Status	Heading	Unit	Description	Example		
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Re	
*	DETL_TOP	m	Depth to TOP of detail description	3.46		
*	DETL_BASE	m	Depth to BASE of detail description	3.76		
	DETL_DESC		Detail description	Claystone		

AGS

Notes for Guidance

• Suggestion on the use of DETL are provided in Appendix 6 Section 12.

Group Name : DICT - User Defined Groups and Headings					1
Status	Heading	Unit	Description	Example	
*	DICT_TYPE		Flag to indicate definition is a GROUP or HEADING (ie can be either of GROUP or HEADING)	HEADING	Rev
*	DICT_GRP		Group Name	ISPT	
*	DICT_HDNG		Heading Name	ISPT_CALN	
	DICT_STAT		Heading status KEY or COMMON (blank for Group)	COMMON	
	DICT_DESC		Description	Corrected N value	
	DICT_UNIT		Units		
	DICT_EXMP		Example	20	1
	?DICT_PGRP		Parent group name	HOLE	Nev

AGS

- ?DICT_PGRP allows for inclusion of the parent group name when the DICT_TYPE is "GROUP". This will permit data integrity checking where data files include user defined groups.
- If the DICT_TYPE is HEADING, then the DICT_TYPE, DICT_GRP, DICT_HDNG, DICT_DESC, DICT_EXMP, DICT_STAT and the DICT_UNIT fields must contain data and ?DICT_PGRP field must all contain a blank value (ie "").
- If the DICT_TYPE is GROUP the DICT_TYPE, DICT_GRP, DICT_DESC and the ?DICT_PGRP fields must contain data and the DICT_HDNG, DICT_EXMP, DICT_STAT fields must all contain a blank value(i.e "").

Group Name : DISC - Discontinuity Data				
Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6421/A
*	DISC_TOP	m	Depth to top in hole, or distance to start on traverse, of discontinuity zone, or discontinuity	10.26
*	DISC_BASE	m	Depth to base in hole, or distance to end on traverse, of discontinuity zone	12.67
*	FRAC_SET		Discontinuity set reference number	J3
*	DISC_NUMB		Discontinuity number	57
	DISC_TYPE		Type of discontinuity	Joint
	DISC_DIP	deg	Dip of discontinuity	08
	DISC_DIR	deg	Dip direction of discontinuity	247
	DISC_RGH		Small scale roughness (ISRM 1978)	Smooth
	DISC_PLAN		Intermediate scale planarity (ISRM 1978)	Planar
	DISC_WAVE	m	Large scale waviness, wavelength (ISRM 1978)	15
	DISC_AMP	m	Large scale waviness, amplitude (ISRM 1978)	0.5
	DISC_JRC		Joint Roughness Coefficient	10
	DISC_APP		Surface appearance	Slightly polished
	DISC_APT	mm	Discontinuity aperture measurement	2
	DISC_APOB		Discontinuity aperture observation	Infilled
	DISC_INFM		Infilling material	Soft clay
	DISC_TERM		Discontinuity termination (lower, upper) (ISRM 1978)	XR (See Appendix 1)
	DISC_PERS	m	Persistence measurement	10.5
	DISC_STR	MPa	Discontinuity wall strength	50
	DISC_WETH		Discontinuity wall weathering	Slightly weathered
	DISC_SEEP		Seepage rating (ISRM 1978)	VI
	DISC_FLOW	l/min	Water flow estimate	2
	DISC_REM		Remarks	
	FILE_FSET		Associated File Reference	FS24

AGS

Notes for Guidance

Details on reporting discontinuity logging data are provided in <u>Appendix 6 Section 17</u>.

Group Name : DPRB - Dynamic Probe Test NB. The type of probe should be recorded in the Group DPRG					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6451/A	Re
*	DPRB_DPTH	m	Depth to start of dynamic probe increment	2.50	
	DPRB_TYPE		Dynamic probe type	Macintosh	
	DPRB_BLOW		Dynamic probe blows for increment DPRB_INC	7	
	DPRB_TORQ	Nm	Maximum torque required to rotate rods	75	
	DPRB_DEL	hhmm	Duration of delay before increment started	0000	Re
	DPRB_INC	mm	Dynamic probe increment	100	
	DPRB_REM		Notes on events during increment		

- Edition 3 publication erroneously showed an incorrect example for DPRB_DEL.
- Guidance on including probe results in DPRG and DPRB groups is provided in <u>Appendix 6 Section 5</u>.

Group Name : DPRG - Dyn			namic Probe Test - General		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6451/A	Rev
	DPRG_TYPE		Dynamic probe type	DPH	
	DPRG_TEST		Test method	BS 1377 Part 9: 3.2	
	DPRG_MASS	kg	Hammer mass	50	
	DPRG_DROP	mm	Standard drop	500	
	DPRG_CONE	mm	Cone base diameter	43	Rev
	DPRG_ROD	mm	Rod diameter	35	
	DPRG_DAMP		Type of anvil damper	None	
	DPRG_TIP	m	Depth of cone if left in ground	8.00	
	DPRG_REM		General remarks	Hole backfilled on completion	
	?DPRG_ANG	Deg	Cone angle	90	Neи
	?DPRG_RMSS	kg/m	Rod Mass	9	New
	FILE_FSET		Associated File Reference	FS25	

- Correction of typographical error. DPRG_CONE was incorrectly published as DRPG_CONE in Edition 3 publication.
- The cone angle and rod mass (per unit length) have been included to provide additional test data for defining non-standard equipment such as the Macintosh Probe.
- Guidance on including probe results in DPRG and DPRB groups is provided in Appendix 6 Section 5.

Group N	Group Name : DREM - Depth Related Remarks				
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Rev
*	DREM_DPTH	m	Depth of DREM_REM	12.50	
	?DREM_BDEP	m	Base depth	13.80	New
	DREM_REM		Depth related remark	Driving boulder ahead of casing	Rev

AGS

Notes for Guidance

- ?DREM_BDEP can be used to include a base depth for remarks allowing the data provider to omit depths from DREM_REM heading (example updated to reflect this).
- Suggestions on the use of DREM are included in Appendix 6 Section 12.

Group Name : FILE - Associated Files					
Status	Heading	Unit	Description	Example	
*	FILE_FSET		File set reference number	FS128	
*	FILE_NAME		File name	BH1COR08.JPG	
	FILE_DESC		Description of content	BH1 Core photo box 8	
	FILE_TYPE		File type	JPG	
	FILE_PROG		Parent program and version number	Paintshop Pro v 5.0	
	?FILE_DOCT		Document type	PH (See Appendix 1)	
	FILE_DATE	dd/mm/yyyy	File date	31/07/1999	

- ?FILE_DOCT has been added to include the AGS-M format data groups and headings (ref CIRIA Project Report 82, 2002).
- Further details on including associated files in an AGS format data submission is provided in Appendix 6 Section 9.

Group Name : FLSH - Rotary Core Flush Details					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Rev
*	FLSH_FROM	m	Depth to top of flush zone	10.00	
*	FLSH_TO	m	Depth to bottom of flush zone	20.00	
	FLSH_TYPE		Type of flush	Water	
	FLSH_RETN	%	Flush return	50	
	FLSH_COL		Colour of flush return	White	

Group	Group Name : FRAC - Fracture Spacing				
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6423/A	R
*	FRAC_TOP	m	Depth to top in hole, or distance to start on traverse, of the zone	31.20	
*	FRAC_BASE	m	Depth to base in hole, or distance to end on traverse, of the zone	33.65	
*	FRAC_SET		Discontinuity set reference number	J3	
	FRAC_FI		Fracture Index over zone (fractures per metre)	15	
	FRAC_IMAX	mm	Maximum Fracture Spacing over zone	350	
	FRAC_IAVE	mm	Average Fracture Spacing over zone	220	
	FRAC_IMIN	mm	Minimum Fracture Spacing over zone	NI	
	FILE_FSET		Associated file reference	FS4	

Group N	lame : FRST	- Fro	st Susceptibility		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6341/A	Re
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	11	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen depth	6.50	
	FRST_COND		Sample condition	Undisturbed	
	FRST_REM		Notes on frost susceptibility testing as per TRRL SR 829		
	FRST_DDEN	Mg/m3	Dry density	1.96	
	FRST_MC	%	Moisture content	24	
	FRST_HVE1	%	Frost heave, first specimen	3.0	
	FRST_HVE2	%	Frost heave, second specimen	4.5	
	FRST_HVE3	%	Frost heave, third specimen	3.5	
	FRST_HVE	%	Mean heave of 3 specimens	3.67	
	FILE_FSET		Associated file reference	FS20	

Del

Group Name : GAST - Gas Constituents

N.B. Provision for reporting of this data is included in groups CNMT and ?ICCT. These groups should be used as appropriate in preference.

Group GAST will be deleted from future editions

	Group GAST will	be deleted from	future editions		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6151/A	De
<u>*</u>	SAMP_TOP	m	Depth to TOP of test sample	6.50	De
<u>*</u>	SAMP_REF		Sample reference number	6	De
*	SAMP_TYPE		Sample type	G (See Appendix 1)	De
<u>*</u>	SPEC_REF		Specimen reference number	ii)	De
<u>*</u>	SPEC_DPTH	m	Specimen Depth	8.50	De
<u>*</u>	GAST_DATE	dd/mm/yyyy	Date of sampling	26/03/1991	De
<u>*</u>	GAST_TIME	hhmmss	Time of sampling	092800	De
	GAST_REM		Remarks		De
	GAST_TEMP	DegC	Temperature of gas at time of sampling	8	De
	GAST_OX	% vol	Oxygen	0.16	De
	GAST_NIT	% vol	Nitrogen	2.4	De
	GAST_CARD	% vol	Carbon Dioxide	33.6	De
	GAST_METH	% vol	Methane	63.8	De
	GAST_HYDS	% vol	Hydrogen Sulphide	0.00002	De
	GAST_ETHA	% vol	Ethane	0.005	De
	GAST_PROP	% vol	Propane	0.002	De
	GAST_HYD	% vol	Hydrogen	0.05	De
	GAST_HEL	% vol	Helium	0.0000005	De
	GAST_HIGA	% vol	Higher Alkanes	0.1	De
	GAST_CARM	% vol	Carbon Monoxide	0.001	De
	GAST_ETHE	% vol	Ethene	0.018	De
	GAST_ACET	% vol	Acetaldehyde	0.005	De
	GAST_ISOB	% vol	Isobutane	0.002	De
	GAST_NBUT	% vol	n - butane	0.001	De
	GAST_SATH	% vol	Saturated Hydrocarbons other than Methane, Ethane, Propane, Butane	0.005	De
	GAST_UNSH	% vol	Unsaturated Hydrocarbons other than Ethene	0.009	De
	GAST_HALO	% vol	Halogenated Compounds	0.00002	De
	GAST_ORGS	% vol	Organosulphur Compounds	0.00001	De
	GAST_ALCO	% vol	Alcohols	0.00001	De
	GAST_HYDC	% vol	Hydrogen Cyanide	0.00001	De
	GAST_DIES	% vol	Diethyl Sulphide	0.000005	De
	GAST_RAD	Bq/m3	Radon	200	De
	GAST_OTHR	% vol	Other Types	0.023	De
	GAST_OTH		Definition of GAST_OTHR		De

Group N	Group Name : GEOL - Stratum Descriptions				
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	
*	GEOL_TOP	m	Depth to the TOP of stratum	16.21	
*	GEOL_BASE	m	Depth to the BASE of description	17.25	
	GEOL_DESC		General description of stratum	Stiff grey silty CLAY	
	GEOL_LEG		Legend code	200 (See Rule 20 and Appendix 1)	
	GEOL_GEOL		Geology code	LC (See Rule 20)	
	GEOL_GEO2		Second Geology code	SAND (See Rule 20)	
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	
	FILE_FSET		Associated file reference	FS4	

Notes for Guidance

• Notes on defining geology codes GEOL_GEOL, GEOL_GEO2 and GEOL_STAT are included in Appendix 6 Section 8.

Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6431/A
*	SAMP_TOP	m	Depth to TOP of test sample	6.50
*	SAMP_REF		Sample reference number	12
*	SAMP_TYPE		Sample type	U (See Appendix 1)
*	SPEC_REF		Specimen reference number	2
*	SPEC_DPTH	m	Specimen Depth	6.60
*	GRAD_SIZE	mm	Sieve or particle size	3.35
	GRAD_PERP	%	Percentage passing/finer	25
	GRAD_TYPE		Grading analysis test type	WS (See Appendix 1)

-	lame: HDIA Casing information		le Diameter by Depth corded in the CDIA group		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Re
*	HDIA_HDEP	m	Depth achieved at HDIA_HOLE	18.0	
	HDIA_HOLE	mm	Borehole diameter	200	
	HDIA_CASG	mm	Casing diameter (included for backward compatibility only)	200	De
	HDIA_CDEP	m	Depth to which HDIA_CASG taken (included for backward compatibility only)	18.0	De
	?HDIA_REM		Remarks	Cased to full depth	Ne

AGS

Notes for Guidance

• ?HDIA_REM has been added to allow additional data regarding hole construction to be included in the data file if required.

roup N	lame : ?HDPH	- Dep	th Related Hole Information		N
Status	Heading	Unit	Description	Example	N
*	?HOLE_ID		Exploratory hole or location equivalent	6422/A	N
*	?HDPH_TOP	m	Depth to top of section	1.4	^
	?HDPH_BASE	m	Depth to base of section	3.4	۸
	?HOLE_TYPE		Type of exploratory Hole	TP (see Appendix 1)	٨
	?HDPH_STAR	dd/mm/yyyy	Date of start of section	01/04/2004	^
	?HDPH_STAT	hhmm	Time of start of section	0930	_
	?HDPH_ENDD	dd/mm/yyyy	Date of end of section	01/04/2004	^
	?HDPH_ENDT	hhmm	Time of end of section	1030	٨
	?HDPT_CREW		Name of Crew	Bill Mallard	^
	?HDPH_LOG		The definitive person responsible for logging the section	DPG	^
	?HDPH_EXC		Plant Used	JCB –3CX	^
	?HDPH_SHOR		Shoring/support Used	None	^
	?HDPH_REM		Remarks	Breaker required	^
	?FILE_FSET		Associated reference	FS21	_

- The ?HDPH group permits transmittal of more detailed information regarding exploratory hole construction. The HOLE group only allows one definition of hole type, excavation methods, dates and associated information. The ?HDPH group allows this data to be subdivided by depth such that the differing methods used to advance a hole or pit (or holes developed using combined methods) can each be explicitly detailed.
- The ?HDPH group should be used when an exploratory hole listed in the HOLE group contains more than one HOLE_TYPE.
- If this group is included in an AGS data set then it would be preferable to omit the overlapping fields from the HOLE group. However, for completeness the HOLE group must include an overall record for the HOLE including HOLE_TYPE, HOLE_FDEP, HOLE_STAR and HOLE_ENDD.

Status	Heading	Unit	Description	Example
*	1		Exploratory hole or location equivalent	327/16A
	HOLE_ID HOLE_TYPE		Type of exploratory hole	CP (See Appendix 1)
	HOLE_NATE		National Grid Easting of hole or start of traverse	523145
	HOLE NATN	m m	National Grid Northing of hole or start of traverse	178456
	HOLE GL	m	Ground level relative to Datum of hole or start of traverse	16.23
	HOLE FDEP	m	Final depth of hole	32.60
	HOLE_STAR	dd/mm/yyyy	Date of start of excavation	18/03/1991
	HOLE LOG	uu/IIII/yyyy	The definitive person responsible for logging the hole	DPG
	HOLE_REM		General remarks on hole	Abandoned on engineer's instruction
	HOLE_ETRV	m	National Grid Easting of end of traverse	523195
	HOLE_NTRV	m	National Grid Northing of end of traverse	178486
	HOLE_LTRV	m	Ground level relative to datum of end of traverse	9.67
	HOLE_LETT		Ordnance Survey letter grid reference	TQ 231 784
	HOLE_LOCX	m	Local grid x co-ordinate	565
	HOLE_LOCY	m	Local grid y co-ordinate	421
	HOLE_LOCZ	m	Level to local datum	+106.6
	HOLE_ENDD	dd/mm/yyyy	Hole end date	22/03/1991
	HOLE_BACD	dd/mm/yyyy	Hole backfill date	22/03/1991
	HOLE_CREW		Name of driller	A.B. Driller
	HOLE_ORNT	deg	Orientation of hole or traverse (degrees from north)	010
	HOLE_INCL	deg	Inclination of hole or traverse (measured positively down from horizontal)	65
	HOLE_EXC		Plant used	JCB - 3CX
	HOLE_SHOR		Shoring/support used	None
	HOLE_STAB		Stability	Stable during excavation
	HOLE_DIML	m	Trial pit or logged traverse length	27.56
	HOLE_DIMW	m	Trial pit or logged traverse width	1.35
	HOLE_LOCM		Method of location	dGPS
	HOLE_LOCA		Location sub division within project	SubStation 1
	HOLE_CLST		Hole cluster reference number	CLST01
	?HOLE_OFFS	See notes	Offset	10.35
	?HOLE_CNGE	See notes	Chainage	23255.55
	?HOLE_STAT		Status of Hole Information	Preliminary
	FILE_FSET		Associated file reference	FS2

- ?HOLE_OFFS and ?HOLE_CNGE permit location data to be recorded by chainage and offset as typically used on road and rail projects. The data included in these headings will probably be expressed in project related units. For example, offset can be defined as positive or negative (eg +10 or -12). Chainage on UK railway projects may well be expressed in miles and chains (eg 10 mi 1 ch)
- The ?HOLE_STAT heading allows the status of the HOLE record and all related records to be defined. In particular this allows the data provider to indicate to data users the checking level applied to the data included in a data set.

- HOLE_LETT example data adjusted to be consistent with Easting and Northing co-ordinate examples.
- Guidelines on the reporting of trial pits are provided in <u>Appendix 6 Section 13</u>.
- Details on the reporting of linear traverses, scanlines or slope strip logs are provided in Appendix 6 Section 16.

Group Name: HPGI - Horizontal Profile Gauge Installation Details

N.B. Provision for reporting of this data is included in group ?MONP, group ?MONP should be used in preference. Group HPGI will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6423/A	Rev
*	HPGI_ID		Instrument reference number	H2345	
	HPGI_DATE	dd/mm/yyyy	Installation date	22/03/1994	
	HPGI_DLN	m	Level of datum point relative to HOLE_GL or HOLE_LOCZ	0.30	
	HPGI_FDIS	m	Distance to furthest reference point from datum point	20	
	HPGI_NDS	m	Distance to nearest reference point from datum point	2.00	
	HPGI_DIRH	deg	Direction of HPG from datum point (degrees from north)	142	
	HPGI_REM		Remarks, details of instrument		
	FILE_FSET		Associated file reference	FS14	

AGS

Notes for Guidance

- Guidance on reporting monitoring test results is provided in <u>Appendix 6 Section 5</u>.
- The use of ?MONP for transfer of monitoring point information is discussed in Appendix 6 Sections 19 to 22.

Group Name: HPGO - Horizontal Profile Gauge Observations

N.B. Provision for reporting of this data is included in group ?MONR, group ?MONR should be used in preference. Group HPGO will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6423/A
*	HPGI_ID		Instrument reference number	H2345
*	HPGO_DATE	dd/mm/yyyy	Date of reading	26/03/1994
*	HPGO_TIME	hhmmss	Time of reading	164000
*	HPGO_DIS	m	Distance from datum point to reading point	15.05
	HPGO_RLEV	m	Level of reading point relative to datum point	0.73
	HPGO_REM		Remarks	Embankment at 2.00m

Notes for Guidance

- Guidance on reporting monitoring test results is provided in Appendix 6 Section 5.
- The use of ?MONR for transfer of monitoring point readings is discussed in Appendix 6 Sections 19 to 22.

Rev

Froup N	lame : ICBR	- In S	itu CBR Test		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A or CBR 6	Re
*	ICBR_DPTH	m	Depth to top of CBR test	0.50	
*	?ICBR_TESN		Test number	2	Ne
	ICBR_REM		Details of apparatus and kentledge		Re
	ICBR_ICBR	%	CBR value	1.2	
	ICBR_MC	%	Moisture content relating to test	25	
	?ICBR_DATE	dd/mm/yyyy	Test date	20/02/2003	Ne
	?ICBR_SEAT	N	Seating force	10	Ne
	?ICBR_SURC	kN/m2	Surcharge pressure	15	Ne
	?ICBR_TYPE		Type of CBR	Mexecone	N
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	

- The addition of a test number (?ICBR_TESN) as a key field in this group allows data for more than one CBR test at a depth to be included in the group without compromising Rule 6b.
- ?ICBR_DATE allows the test date to be included in the data.
- ?ICBR_SEAT allows the plunger seating force to be included in the data as required.
- ?ICBR_SURC allows the surcharge pressure to be recorded and the description for the ICBR_REM heading has been modified.
- ?ICBR_TYPE has been added to allow a description or code to be included to categorise the equipment and method of measurement.
- ICBR_REM description has been extended to include details of kentledge together with apparatus.

roup N	Name : ?ICCT	- In 9	Situ Contaminant and Chemical Testing		
Status	Heading	Unit	Description	Example	
*	?HOLE_ID		Exploratory hole or location equivalent	6461/A	
*	?MONP_DIS		Distance from Reference Point	2.30	
*	?MONP_ID		Monitoring Point ID (optional)	ZT111	
*	?ICCT_DATE		Date of reading	20/02/2003	
*	?ICCT_TIME		Time of reading	134000	
*	?CNMT_TYPE		Determinand	GMETH (See Appendix 1)	
*	?CNMT_TTYP		Test type	GAS (See Appendix 1)	
	?ICCT_RESL		Test result	54.76	
	?ICCT_UNIT		Test result units	%vol (See Appendix 1)	
	?ICCT_METH		Test method/instrument type		
	?ICCT_CAS		Chemical Abstract Service registry number (where appropriate)		
	?ICCT_PREP		Sample preparation	Air dried	
	?ICCT_REM		Comments on test		
	?ICCT_LIM		Method/instrumentation lower detection limit		
	?ICCT_ULIM		Method/instrumentation upper detection upper limit		
	?ICCT_NAME		Client/laboratory preferred name of determinand	Methane Gas	
	?ICCT_LAB		Name of testing laboratory/Organisation	Testing House	
	?ICCT_CRED		Accrediting body (when appropriate)	UKAS	
	?ICCT_LBID		Laboratory Internal Reference	LB234675	
	?FILE_SET		Associated file reference	FS22	

- The ?ICCT group has been added to include the AGS-M format data groups and headings (ref CIRIA Project Report 82, 2002) with the addition of an ?ICCT_ULIM heading to contain the methof/instrumentation upper detection limit where applicable.
- Guidance on the transfer of gas and geochemical monitoring data is provided in Appendix 6 Section 23.

Group Name : IDEN - In Situ Density Test					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6461/A or DEN 7	F
*	IDEN_DPTH	m	Depth of in situ density test	1.25	
*	?IDEN_TESN		Test number	2	۸
	?IDEN_DATE	dd/mm/yyyy	Test date	20/02/2003	^
	IDEN_REM		Details of in situ density test	Nuclear probe	
	IDEN_IDEN	Mg/m3	In situ bulk density	1.86	
	IDEN_MC	%	Moisture content relating to in situ test	18	
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	

- The addition of a test number (?IDEN_TESN) as a key field in this group allows data for more than one in situ density test at a depth to be included in the group without compromising Rule 6b.
- ?IDEN_DATE allows the test date to be included in the data.

Group Name : ?IFID - On Site Volatile Headspace Testing Using Flame Ionisation Detec				e Ionisation Detector	۸
Status	Heading	Unit	Description	Example	_
*	?HOLE_ID		Exploratory hole or location equivalent	6421/A	^
*	?IFID_DPTH	m	Depth of headspace test sample	1.0	1
*	?IFID_TESN		Test number	2	1
	?IFID_DATE	dd/mm/yyyy	Test date	20/02/2003	1
	?IFID_REM		Details of FID used and method description	Flame ionisation detector	1
	?IFID_RES	ppmv	Result of FID analysis	10	,
	?GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	1

Notes for Guidance

• The ?IPID and ?IFID groups have been added in order to facilitate the recording of the results of on site volatile testing by means of headspace analysis using photo ionisation or flame ionisation detectors.

Group Name : INST - Single Point Instrument Installation Details

N.B. Provision for reporting of this data is included in group ?MONP, group ?MONP should be used in preference. Group INST will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6421/A
*	INST_TDEP	m	Depth to reference level of instrument from HOLE_GL or HOLE_LOCZ	7.25
*	INST_ID		Instrument reference number	A2345
	INST_TYPE		Instrument type	ESET (See Appendix 1)
	INST_DATE	dd/mm/yyyy	Instrument installation date	22/03/1994
	INST_TRPS	m	Depth to top of response zone from HOLE_GL or HOLE_LOCZ	6.50
	INST_BRPS	m	Depth to base of response zone from HOLE_GL or HOLE_LOCZ	7.50
	INST_DIP	deg	Inclination of instrument (measured positively down from horizontal)	90
	INST_DIR	deg	Direction of INST_DIP (degrees from north)	270
	INST_INTZ	kN/m2	Pressure reading at zero applied pressure	15
	INST_REM		Remarks	
	FILE_FSET		Associated file reference	FS13
	1		1	1

Notes for Guidance

- Guidance on reporting monitoring test results is provided in <u>Appendix 6 Section 5</u>.
- The use of ?MONP for transfer of monitoring point information is discussed in <u>Appendix 6 Sections 19 to 22</u>.

Group Name : IOBS - Single Point Instrument Readings N.B. Provision for reporting of this data is included in group ?MONR, group ?MONR should be used in preference. Group IOBS will be marked for deletion in the next edition. Status Heading Unit Description Example

Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Rev
*	INST_TDEP	m	Depth to reference level of instrument from HOLE_GL or HOLE_LOCZ	7.25	
*	INST_ID		Instrument reference number	A2345	
*	IOBS_DATE	dd/mm/yyyy	Date of reading	26/03/1994	
*	IOBS_TIME	hhmmss	Time of reading	164000	
	IOBS_DEP	m	Depth to water from HOLE_GL or HOLE_LOCZ	2.25	Del
	IOBS_HEAD	m	Head of water above INST_DEP	5.00	Del
	IOBS_PRES	kN/m2	Reading of pressure	80	
	IOBS_LEVL	m	Level of settlement point relative to datum	11.56	
	IOBS_REM		Remarks	Reading taken during heavy rain	

- Guidance on reporting monitoring test results is provided in <u>Appendix 6 Section 5</u>.
- The use of ?MONR for transfer of monitoring point readings is discussed in <u>Appendix 6 Sections 19 to 22</u>.

Group Name : ?IPID - On Site Volatile Headspace Testing by Photo Ionisation Detect			nisation Detector	Ne	
Status	Heading	Unit	Description	Example	
*	?HOLE_ID		Exploratory hole or location equivalent	6421/A	N
*	?IPID_DPTH	m	Depth of headspace test sample	1.0	N
*	?IPID_TESN		Test number	3	N
	?IPID_DATE	dd/mm/yyyy	Test date	20/02/2003	N
	?IPID_REM		Details of PID used and method description	Carried out on temporary samples using photo ionisation detector fitted with 10.6 eV lamp	N
	?IPID_RES	ppmv	Result of PID analysis	10	N
	?GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	N

• The ?IPID and ?IFID groups have been added in order to facilitate the recording of the results of on site volatile testing by means of headspace analysis using photo ionisation or flame ionisation detectors.

Group Name : IPRM - In Situ Permeability Test					
Status	Heading	Unit	Description	Example	1
*	HOLE_ID		Exploratory hole or location equivalent	6471/A	Re
*	IPRM_TOP	m	Depth to top of test zone	12.20	
*	IPRM_BASE	m	Depth to base of test zone	12.95	
*	IPRM_STG		Stage number of multistage packer test	1	
*	?IPRM_TESN		Test number	2	Ne
	IPRM_TYPE		Type of test	Rising, Falling, Constant Head	
	IPRM_PRWL	m	Depth to water in borehole or piezometer immediately prior to test	10.60	
	IPRM_SWAL	m	Depth to water at start of test	5.40	
	IPRM_TDIA	m	Diameter of test zone	0.150	
	IPRM_SDIA	m	Diameter of standpipe or casing	0.019	
	IPRM_IPRM	m/s	Permeability	5E-9	
	IPRM_REM		Test remarks		
	IPRM_FLOW	l/s	Average flow during packer test stage	2.3	
	IPRM_AWL	m	Depth to assumed standing water level	10.0	
	IPRM_HEAD	m	Applied total head of water during test stage at centre of packer test zone	20.5	
	?IPRM_DATE	dd/mm/yyyy	Test date	20/02/2003	Ne
	FILE_FSET		Associated File Reference	FS26	Ī

AGS

- The addition of a test number (?IPRM_TESN) as a key field in this group allows data for more than one permeability test at a depth to be included in the group without compromising Rule 6b.
- ?IPRM_DATE allows the test date to be included.

Group Name : IRDX - In Situ Redox Test					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A or RDX 2	Re
*	IRDX_DPTH	m	Depth of redox test	1.0	
*	?IRDX_TESN		Test number	2	Ne
	?IRDX_DATE	dd/mm/yyyy	Test date	20/02/2003	Ne
	IRDX_REM		Details of redox test and probe type		
	IRDX_PH		pH	7.0	
	IRDX_IRDX	mV	Redox potential	400	
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	

- The addition of a test number (?IRDX_TESN) as a key field in this group allows data for more than one redox test at a depth to be included in the group without compromising Rule 6b.
- ?IRDX_DATE allows the test date to be included in the data.

Group Name : IRES - In Situ Resistivity Test					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A or RES/12	Rev
*	IRES_DPTH	m	Depth range to which in situ resistivity test relates	0 to 10	
*	?IRES_TESN		Test number	2	New
	IRES_TYPE		Type of resistivity test		
	?IRES_DATE	dd/mm/yyyy	Test date	20/02/2003	New
	IRES_IRES	ohm cm	Result	2000	
	IRES_REM		Details of test eg. electrode spacing and configuration		
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	

- The addition of a test number (?IRES_TESN) as a key field in this group allows data for more than one resistivity test at a depth to be included in the group without compromising Rule 6b.
- ?IRES_DATE allows the test date to be included in the data.

Group N	Group Name : ISPT - Standard Penetration Test Results					
Status	Heading	Unit	Description	Example		
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	F	
*	ISPT_TOP	m	Depth to top of test	13.50		
	ISPT_SEAT		Number of blows for seating drive	14		
	ISPT_MAIN		Number of blows for main test drive	35		
	ISPT_NPEN	mm	Total penetration for seating drive and test drive	450	1	
	ISPT_NVAL		SPT 'N' value	35		
	ISPT_REP		SPT reported result	6,8/8,9,9,9 N=35		
	ISPT_CAS	m	Casing depth at time of test	12.00		
	ISPT_WAT	m	Depth to water at time of test	2.50		
	ISPT_TYPE		Type of SPT test	S (See Appendix 1)		
	?ISPT_SWP	mm	Self-weight penetration	25		
	ISPT_REM		Remarks relating to the test	Borehole topped up with water prior to test		
	ISPT_INC1		Number of blows for 1st Increment (Seating)	6		
	ISPT_INC2		Number of blows for 2nd Increment (Seating)	8		
	ISPT_INC3		Number of blows for 1st Increment (Test)	8		
	ISPT_INC4		Number of blows for 2nd Increment (Test)	9		
	ISPT_INC5		Number of blows for 3rd Increment (Test)	9		
	ISPT_INC6		Number of blows for 4th Increment (Test)	9		
	ISPT_PEN1	mm	Penetration for 1st Increment (Seating Drive)	75		
	ISPT_PEN2	mm	Penetration for 2nd Increment (Seating Drive)	75		
	ISPT_PEN3	mm	Penetration for 1st Increment (Test)	75		
	ISPT_PEN4	mm	Penetration for 2nd Increment (Test)	75		
	ISPT_PEN5	mm	Penetration for 3rd Increment (Test)	75		
	ISPT_PEN6	mm	Penetration for 4th Increment (Test)	75		

- Description of ISPT_NPEN has been clarified. It should represent the total test depth comprising both the seating drive and the main test drive.
- ?ISPT_SWP has been added to allow the self-weight penetration of the SPT tool to be included by the data provider. This value can then be included in any evaluation of the test data.
- Guidelines for reporting SPT results are provided in <u>Appendix 6 Section 14</u>.

Group Name : IVAN - In Situ Vane Test					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A or VAN 15	Re
*	IVAN_DPTH	m	Depth of vane test	13.50	
*	IVAN_TESN		Vane test number	2	
	IVAN_REM		Details of vane test, vane size, vane type		
	IVAN_IVAN	kN/m2	Vane test result	60	
	IVAN_IVAR	kN/m2	Vane test remoulded result	45	
	IVAN_IPEN	kN/m2	Hand penetrometer result	23	
	?IVAN_DATE	dd/mm/yyyy	Test Date	20/02/2003	Ne
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	

• ?IVAN_DATE allows the test date to be included in the data.

Group Name : MCVG - MCV Test - General					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6481/A	Re
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	18	
*	SAMP_TYPE		Sample type	LB (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	6.50	
	MCVG_REM		Notes on MCV test as BS 1377 Part 4 Cl. 5.4, and 5.5. Test report items a) and c)		
	MCVG_2ØØ	%	Weight percent of material retained on 20mm sieve	15	
	MCVG_NMC	%	Natural moisture content	21	
	MCVG_PRCL		MCV precalibrated value as BS 1377 Part 4 and whether higher or lower.	>10	
	FILE_FSET		Associated file reference	FS15	

AGS

Notes for Guidance

• Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group N	Group Name : MCVT - MCV Test					
Status	Heading	Unit	Description	Example		
*	HOLE_ID		Exploratory hole or location equivalent	6481/A		
*	SAMP_TOP	m	Depth to TOP of test sample	6.50		
*	SAMP_REF		Sample reference number	18		
*	SAMP_TYPE		Sample type	LB (See Appendix 1)		
*	SPEC_REF		Specimen reference number	2		
*	SPEC_DPTH	m	Specimen Depth	6.50		
*	MCVT_TESN		MCV test number	1		
	MCVT_MC	%	Moisture content	17		
	MCVT_RELK		MCV value at MCVT_MC moisture content	12.3		
	MCVT_BDEN	Mg/m3	Bulk density related to the MCVT_RELK MCV	2.0		

Notes for Guidance

• Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

	1			
Status	Heading	Unit	Description	Example
*	?HOLE_ID		Exploratory hole or location equivalent	6422/A
*	?MONP_DIS	m	Distance of monitoring point from HOLE_ID	2.30
*	?MONP_ID		Monitoring Point Identifier	ZT102
	?MONP_DATE	dd/mm/yyyy	Installation date	01/02/2003
	?MONP_TYPE		Instrument type	TS (See Appendix 1)
	?MONP_TRZ	m	Distance to start of response zone from HOLE_ID datum	5.50
	?MONP_BRZ	m	Distance to end of response zone from HOLE_ID datum	7.50
	?MONP_BRGA	deg	Bearing of monitoring axis A (compass bearing)	090
	?MONP_BRGB	deg	Bearing of monitoring axis B (compass bearing)	180
	?MONP_BRGC	deg	Bearing of monitoring axis C (compass bearing)	NA
	?MONP_INCA	deg	Inclination of instrument axis A (measured positively down from horizontal)	
	?MONP_INCB	deg	Inclination of instrument axis B (measured positively down from horizontal)	
	?MONP_INCC	deg	Inclination of instrument axis C (measured positively down from horizontal)	
	?MONP_RSCA		Reading sign convention in direction A	Displacement to East +ve
	?MONP_RSCB		Reading sign convention in direction B	Displacement to South +ve
	?MONP_RSCC		Reading sign convention in direction C	Displacement up +ve
	?MONP_REM		Remarks	Behind wall
	?FILE_FSET		Associated file reference	FS27

AGS

Notes for Guidance

 The ?MONP group has been added to include the AGS-M format data groups and headings (ref CIRIA Project Report 82, 2002)

Status	Heading	Unit	Description	Example	
olalus	neading	Offic	Description	Example	
*	?HOLE_ID		Exploratory hole or location equivalent	6422/A	Ne
*	?MONP_DIS	m	Distance of monitoring point from HOLE_ID	2.30	Ne
*	?MONP_ID		Monitoring Point Identifier	ZT102	N
*	?MONR_DATE	dd/mm/yyyy	Date of reading	20/02/2003	N
*	?MONR_TIME	hhmmss	Time of reading	134000	N
	?MONR_DSTA	m	Distance A from HOLE_ID (slip indicator top rod)	2.73	N
	?MONR_DSTB	m	Distance B from HOLE_ID (slip indicator top rod)	11.56	N
	?MONR_DSPA	mm	Displacement in direction A	24	٨
	?MONR_DSPB	mm	Displacement in direction B	12.7	۸
	?MONR_DSPC	mm	Displacement in direction C	-10.842	٨
	?MONR_PRES	kN/m2	Pressure	20.64	۸
	?MONR_ANGA	deg	Rotation/Tilt in direction A	0.023	^
	?MONR_ANGB	deg	Rotation/Tilt in direction B	-0.284	٨
	?MONR_ANGC	deg	Rotation in direction C	2.42	^
	?MONR_STRA	%	Strain in direction A	-1.87	٨
	?MONR_STRB	%	Strain in direction B	1.09	۸
	?MONR_STRC	%	Strain in direction C	1.23	۸
	?MONR_FORC	kN	Force	62.8	^
	?MONR_TEMP	DegC	Temperature	21.2	^
	?MONR_WDEP	m	Depth to water from HOLE_ID datum	6.42	۸
	?MONR_EAST	m	Absolute position (Easting)	523145	٨
	?MONR_NRTH	m	Absolute position (Northing)	178963	٨
	?MONR_LEV	m	Absolute position (Level)	10.2	^
	?MONR_WHD	m	Head of water above tip	2.1	^
	?MONR_GAUG	m	Gauge length	0.50	^
	?MONR_FLOW	l/s	Flow	20.1	٨
	?MONR_REM		Details for instrument reference, probe logger, serial numbers		^
	?FILE_FSET		Associated file reference	FS28	٨

Notes for Guidance

 The ?MONR group has been added to include the AGS-M format data groups and headings (ref CIRIA Project Report 82, 2002)

Rev

Rev

Group Name : POBS - Piezometer Readings

N.B. Provision for reporting of this data is included in group ?MONR, group ?MONR should be used in preference. Group POBS will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6421/A
*	PREF_TDEP	m	Depth to reference level of piezometer tip	7.25
*	POBS_DATE	dd/mm/yyyy	Date of piezometer reading	26/03/1991
*	POBS_TIME	hhmmss	Time of piezometer reading	164000
	POBS_DEP	m	Depth to water below ground surface	6.40
	POBS_HEAD	m	Head of water above piezometer tip	0.85
	POBS_REM		Remarks	Reading taken during heavy rain

Notes for Guidance

- Guidance on reporting monitoring test results is provided in Appendix 6 Section 5.
- The use of ?MONR for transfer of monitoring point readings is discussed in Appendix 6 Sections 19 to 22.

Group Name : PREF - Piezometer Installation Details N.B. Provision for reporting of this data is included in group 2MONP.

N.B. Provision for reporting of this data is included in group ?MONP, group ?MONP should be used in preference. Group PREF will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6421/A
*	PREF_TDEP	m	Depth to reference level of piezometer tip	7.25
	PREF_DATE	dd/mm/yyyy	Piezometer installation date	22/03/1991
	PREF_TYPE		Piezometer type	PPIE (See Appendix 1)
	PREF_TRPS	m	Depth to top of response zone	6.50
	PREF_BRPS	m	Depth to base of response zone	7.50
	PREF_REM		Details of type and depths of grouting and readout arrangements/locations	
	FILE_FSET		Associated file reference	FS6

- Guidance on reporting monitoring test results is provided in Appendix 6 Section 5.
- The use of ?MONP for transfer of monitoring point information is discussed in Appendix 6 Sections 19 to 22.

Group Name: PROB - Profiling Instrument Readings

N.B. Provision for reporting of this data is included in group ?MONR, group ?MONR should be used in preference. Group PROB will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6422/A	R
*	PROF_ID		Instrument reference number	B2345	
*	PROB_DATE	dd/mm/yyyy	Date of reading	26/03/1994	
*	PROB_TIME	hhmmss	Time of reading	164000	
*	PROB_DEP	m	Depth of reading from HOLE_GL or HOLE_LOCZ	6.50	
	PROB_GAUG		Rod or inclinometer gauge length	0.50	
	PROB_TDEP	m	Depth to top of slip obstruction from HOLE_GL or HOLE_LOCZ for slip indicator	3.20	
	PROB_BDEP	m	Depth to base of slip obstruction from HOLE_GL or HOLE_LOCZ for slip indicator	4.00	
	PROB_A	mm	Primary keyway displacement direction A	3	
	PROB_B	mm	Displacement direction B	-3	
	PROB_C	mm	Displacement direction C	2	
	PROB_D	mm	Displacement direction D	-2	
	PROB_REM		Details for instrument reference, probe logger, serial numbers		

- Guidance on reporting monitoring test results is provided in <u>Appendix 6 Section 5</u>.
- The use of ?MONR for transfer of monitoring point readings is discussed in <u>Appendix 6 Sections 19 to 22</u>.

Group Name: PROF - Profiling Instrument Installation Details

N.B. Provision for reporting of this data is included in group ?MONP, group ?MONP should be used in preference. Group PROF will be marked for deletion in the next edition.

Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6422/A
*	PROF_ID		Instrument reference number	B2345
	PROF_DATE	dd/mm/yyyy	Installation date	22/03/1994
	PROF_TYPE		Profiling instrument type	INCL (See Appendix 1)
	PROF_TRPS	m	Depth to top of response zone from HOLE_GL or HOLE_LOCZ	0.00
	PROF_BRPS	m	Depth to base of response zone from HOLE_GL or HOLE_LOCZ	7.50
	PROF_DIRA	deg	Orientation of primary keyway (degrees from north)	120
	PROF_REM		Remarks	Primary keyway (A) orientated downslope, secondary direction (C) across slope to left looking down
	FILE_FSET		Associated File Reference	FS27

- Guidance on reporting monitoring test results is provided in <u>Appendix 6 Section 5</u>.
- The use of ?MONP for transfer of monitoring point information is discussed in Appendix 6 Sections 19 to 22.

Group Name : PRTD		- Pres	ssuremeter Test Data	
Status	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6431/A
*	PRTD_TREF		Reference number of test	1
*	PRTD_DPTH	m	Depth of test	2.70
*	PRTD_SEQ		Sequence number	1
	PRTD_DATE	dd/mm/yyyy	Date of test	22/12/1993
	PRTD_TYPE		Pressuremeter type	SBP (See Appendix 1)
	PRTD_DIA	mm	Uninflated diameter of pressuremeter	82.9
	PRTD_ARM1	mm	Arm (pair) 1 displacement	1.0
	PRTD_ARM2	mm	Arm (pair) 2 displacement	1.0
	PRTD_ARM3	mm	Arm (pair) 3 displacement	1.0
	PRTD_TPC1	kN/m2	Total pressure/arm (pair) 1	54.40
	PRTD_TPC2	kN/m2	Total pressure/arm (pair) 2	54.40
	PRTD_TPC3	kN/m2	Total pressure/arm (pair) 3	54.40
	PRTD_PPA	kN/m2	Pore pressure cell A	2.90
	PRTD_PPB	kN/m2	Pore pressure cell B	2.90
	PRTD_REM		Remarks	
	PRTD_PRES	kN/m2	Total pressure in test cell	60.1
	PRTD_VOL	cm3	Volume change in test cell	2.6

tatus	Heading	Unit	Description	Example
*	HOLE_ID		Exploratory hole or location equivalent	6431/A
*	PRTD_TREF		Reference number of test	1
*	PRTD_DPTH	m	Depth of test	2.70
	PRTD_DATE	dd/mm/yyyy	Date of test	22/12/1993
	PRTD_TYPE		Pressuremeter type	SBP (See Appendix 1)
	PRTD_DIA	mm	Uninflated diameter of pressuremeter	82.9
	PRTG_HA1	kN/m2	Estimated horizontal stress, arm (pair) 1	700
	PRTG_HA2	kN/m2	Estimated horizontal stress, arm (pair) 2	700
	PRTG_HA3	kN/m2	Estimated horizontal stress, arm (pair) 3	700
	PRTG_HAA	kN/m2	Estimated horizontal stress, average	700
	PRTG_GIA1	MN/m2	Initial shear modulus, arm (pair) 1	70
	PRTG_GIA2	MN/m2	Initial shear modulus, arm (pair) 2	70
	PRTG_GIA3	MN/m2	Initial shear modulus, arm (pair) 3	70
	PRTG_GIAA	MN/m2	Initial shear modulus, average	70
	PRTG_CUA1	kN/m2	Undrained shear strength, arm (pair) 1	420
	PRTG_CUA2	kN/m2	Undrained shear strength, arm (pair) 2	420
	PRTG_CUA3	kN/m2	Undrained shear strength, arm (pair) 3	420
	PRTG_CUAA	kN/m2	Undrained shear strength, average	420
	PRTG_PLA1	kN/m2	Limit pressure, arm (pair) 1	3400
	PRTG_PLA2	kN/m2	Limit pressure, arm (pair) 2	3400
	PRTG_PLA3	kN/m2	Limit pressure, arm (pair) 3	3400
	PRTG_PLAA	kN/m2	Limit pressure, average	3400
	PRTG_AFA1	deg	Angle of friction, arm (pair) 1	39
	PRTG_AFA2	deg	Angle of friction, arm (pair) 2	39
	PRTG_AFA3	deg	Angle of friction, arm (pair) 3	39
	PRTG_AFAA	deg	Angle of friction, average	39
	PRTG_ADA1	deg	Angle of dilation, arm (pair) 1	10
	PRTG_ADA2	deg	Angle of dilation, arm (pair) 2	10
	PRTG_ADA3	deg	Angle of dilation, arm (pair) 3	10
	PRTG_ADAA	deg	Angle of dilation, average	10
	PRTG_AFCV	deg	Angle of friction at constant volume (φ _{cv}) used	35
	PRTG_REM		Remarks	
	FILE_FSET		Associated file reference	FS11

Group Name : PRTL - Pressuremeter Test Results, Individual Loops					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	
*	PRTD_TREF		Reference number of test	1	
*	PRTD_DPTH	m	Depth of test	2.70	
*	PRTL_LNO		Unload/Reload loop number	1	
	PRTD_DATE	dd/mm/yyyy	Date of test	22/12/1993	
	PRTD_TYPE		Pressuremeter type	SBP (See Appendix 1)	
	PRTD_DIA	mm	Uninflated diameter of pressuremeter	82.9	
	PRTL_GA1	MN/m2	Unload/reload shear modulus, arm (pair) 1	70	
	PRTL_GA2	MN/m2	Unload/reload shear modulus, arm (pair) 2	70	
	PRTL_GA3	MN/m2	Unload/reload shear modulus, arm (pair) 3	70	
	PRTL_GAA	MN/m2	Unload/reload shear modulus, average	70	

Group N	lame : PTIM	- Hole	e Progress by Time		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Re
*	PTIM_DATE	dd/mm/yyyy	Date of progress reading	20/03/1991	
*	PTIM_TIME	hhmm	Time of progress reading	1435	
	PTIM_DEP	m	Hole depth at PTIM_TIME	22.13	
	PTIM_CAS	m	Depth of casing at PTIM_TIME	20.50	
	PTIM_WAT	m	Depth to water at PTIM_TIME	16.56	
	PTIM_REM		Remarks at PTIM_TIME	Stopped drilling on client's instruction	

	1	I	T	1	
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6411/A	F
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	6.50	
*	PTST_TESN		Permeability test number	2	
	PTST_REM		Permeability test method	Constant head permeability test	
	PTST_COND		Sample condition	Undisturbed	
	PTST_SZUN	mm	Size cut off of material too coarse for testing	5	
	PTST_UNS	%	Proportion of material too coarse for testing - BS 1377 Part 5 cl 5.7	36	
	PTST_DIA	mm	Diameter of test sample	102	
	PTST_LEN	mm	Length of test sample	200	
	PTST_MC	%	Initial moisture content of test sample	20	
	PTST_BDEN	Mg/m3	Initial bulk density of test sample	2.24	
	PTST_DDEN	Mg/m3	Dry density of test sample	1.87	
	PTST_VOID		Voids ratio of test sample	0.37	
	PTST_K	m/s	Coefficient of permeability	4E-6	
	PTST_TSTR	kN/m2	Mean effective stress at which permeability measured (when measured in triaxial cell).	112	
	PTST_ISAT	%	Initial degree of saturation	72	
	PTST_FSAT	%	Final degree of saturation	98	
	PTST_PDEN	Mg/m3	Particle density, measured or (#) assumed	2.65	
	FILE_FSET		Associated File Reference	FS28	

Notes for Guidance

• The standard units for PTST_PDEN have been added as Mg/m3.

Group Name : PUMP - Pumping Test					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	
*	PUMP_DATE	dd/mm/yyyy	Date of reading	16/03/1991	
*	PUMP_TIME	hhmmss	Time of reading	143500	
	PUMP_DPTH	m	Depth to water below ground	12.5	
	PUMP_QUAT	l/s	Pumping rate from hole	0.8	
	PUMP_REM		Remarks	Double packer	
	FILE_FSET		Associated File Reference	FS29	

Group N	Name: RELD	- Rela	tive Density Test		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	R
*	SAMP_TOP	m	Depth to TOP of test sample	8.50	
*	SAMP_REF		Sample reference number	16	
*	SAMP_TYPE		Sample type	LB (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen depth	8.50	
	RELD_REM		Method of test		
	RELD_DMAX	Mg/m3	Maximum dry density as BS 1377 part 4 cl 4	2.15	
	RELD_375	%	Weight percent of sample retained on 37.5mm sieve	7.0	
	RELD_Ø63	%	Weight percent of sample retained on 6.3mm sieve	10	
	RELD_Ø2Ø	%	Weight percent of sample retained on 2mm sieve	5.0	
	RELD_DMIN	Mg/m3	Minimum dry density as BS 1377 part 4 cl 4	1.65	

Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6423/A	
*	SAMP_TOP	m	Depth to TOP of test sample	2.54	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	C (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen depth	2.54	
	ROCK_PLS	MN/m2	Uncorrected point load (I _s)	2.3	
	ROCK_PLSI	MN/m2	Size corrected point load index (I _s 50)	2.5	
	ROCK_PLTF		Point load test type (A, D, L or P)	A+L (See Appendix 1)	
	ROCK_UCS	MN/m2	Uniaxial compressive strength (size corrected)	16.8	
	ROCK_REM		Remarks		
	ROCK_PREM		Details additional to ROCK_PLTF		
	ROCK_UREM		Notes on uniaxial compressive strength test, including sample dimensions	ISRM 76mm diameter 205mm high	
	ROCK_E	MN/m2	Elastic modulus	220	
	ROCK_MU		Poisson's ratio	0.3	
	ROCK_BRAZ	MN/m2	Tensile strength by the Brazilian method	50	
	ROCK_BREM		Notes on Brazilian tensile strength test including sample dimensions	ISRM 76mm diameter 32mm thick	
	ROCK_PORO	%	Rock porosity	17	
	ROCK_PORE		Notes on type of porosity test	ISRM Calliper method	
	ROCK_MC	%	Natural moisture content	18	
	ROCK_BDEN	Mg/m3	Rock bulk density	2.22	
	ROCK_DDEN	Mg/m3	Rock dry density	1.88	
	ROCK_PDEN	Mg/m3	Aggregate particle density	2.53	
	ROCK_DREM		Aggregate particle density test method and notes	BS812 Gas jar method. Saturated, surface dried10mm aggregate	

Status	Heading	Unit	Description	Example
	ROCK_WTAB	%	Aggregate water absorption	2.6
	ROCK_WREM		Aggregate water absorption test method and notes	BS812 Gas jar method 10mm aggregate
	ROCK_SDI	%	Slake durability Index	23.2
	ROCK_SREM		Slake durability test method and notes	ISRM 2nd cycle Tap wate at 20 deg C
	ROCK_SOUN	%	Aggregate Soundness Test	95
	ROCK_MREM		Aggregate soundness test method and notes	BS 812 Magnesium sulphate 10-14mm aggregate 5 cycles % retained
	ROCK_ACV	%	Aggregate Crushing Value	16.5
	ROCK_CREM		Aggregate Crushing Value test method and notes	BS812 10-14mm aggregate
	ROCK_AIV	%	Aggregate Impact Value	15
	ROCK_IREM		Aggregate Impact Value test method and notes	BS812 10-14mm aggregate, saturated 15 blows
	ROCK_LOSA	%	Aggregate Los Angeles abrasion	15
	ROCK_LREM		Aggregate Los Angeles abrasion test method and notes	ASTM C131 9.5-19mm aggregate 500 revolutions
	ROCK_AAV		Aggregate Abrasion Value	8.32
	ROCK_PSV		Aggregate Polished Stone Value	67
	ROCK_FI	%	Aggregate Flakiness Index	9
	ROCK_EI	%	Aggregate Elongation Index	12
	ROCK_DESC		Specimen description	Mudstone
	ROCK_SHOR		Shore hardness	29.7
	ROCK_PWAV	m/s	P-wave velocity	3000
	ROCK_SWAV	m/s	S-wave velocity	1800
	ROCK_EMOD	GPa	Dynamic Elastic Modulus	20
	ROCK_SG	GPa	Shear modulus derived from ROCK_SWAV	8
	ROCK_SWEL	kN/m2	Rock swelling index	50
	FILE_FSET		Associated file reference	FS10

Notes for Guidance

A pick list has been included to standardise the coding of point load tests ROCK_PLTF. The codes used are
derived form the ISRM Suggested Method (ISRM, 1985). Typically a test will include combined codes to
represent the sample type/orientation and the direction of the test with respect to bedding. For example a piece
of core tested across the diameter and along the bedding direction will be coded as A+L

Reference: ISRM : 1985 : Suggested method for determining point load strength. Int J Rock Mech Min Sci & Geomech Abstr, Vol 22, No 2, pp 51-60

• The Rock testing data group ROCK is the subject of on-going discussion. Please refer to the data format website discussion boards http://www.ags.org.uk for more information. This group will be updated in the next edition of the AGS Data Format.

Group N	Name : SAMP	- Sam	ple Reference Information		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	R
*	SAMP_TOP	m	Depth to TOP of sample	24.55	
*	SAMP_REF		Sample reference number	24	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
	SAMP_DIA	mm	Sample diameter	100	
	SAMP_BASE	m	Depth to BASE of sample	25.00	
	SAMP_DESC		Sample description	Stiff brown very silty CLAY	
	SAMP_UBLO		Number of blows required to drive sampler	35	
	SAMP_REM		Sample remarks	60% recovery	
	SAMP_DATE	dd/mm/yyyy	Date sample taken	26/03/1991	
	SAMP_TIME	hhmmss	Time sample taken	092800	
	SAMP_BAR	kPa	Barometric Pressure at time of sampling	99.1	
	SAMP_WDEP	m	Depth to water below ground surface at time of sampling	4.50	
	SAMP_TEMP	DegC	Sample temperature at time of sampling	8	
	SAMP_PRES	kPa	Gas pressure (above barometric)	0.2	
	SAMP_FLOW	l/min	Gas flow	0.2	
	?SAMP_PREP		Details of sample preparation	Preservative added	N
	GEOL_STAT		Stratum reference shown on trial pit or traverse sketch	1	
	FILE_FSET		Associated file reference	FS3	

- New environmental SAMP_TYPE codes have been added in order to provide a standard for environmental samples. Additional SAMP_TYPE codes may be defined for more detailed environmental sampling protocols linked to a contract specification and/or method of measurement.
- ?SAMP_PREP has been added to allow details of the sample preparation to be included. This would typically be used to detail the precautions taken with samples for further chemical or environmental testing.
- Details on using amalgamated samples to present laboratory testing results are provided in <u>Appendix 6</u> <u>Section 11</u>.

Group N	Group Name : SHBG - Shear Box Testing - General					
Status	Heading	Unit	Description	Example		
*	HOLE_ID		Exploratory hole or location equivalent	6331/A	_	
*	SAMP_TOP	m	Depth to TOP of test sample	6.50		
*	SAMP_REF		Sample reference number	12		
*	SAMP_TYPE		Sample type	U (See Appendix 1)		
*	SPEC_REF		Specimen reference number	2		
*	SPEC_DPTH	m	Specimen Depth	6.50		
	SHBG_TYPE		Test type e.g. small shear box, large shear box, ring shear	Small shear box		
	SHBG_REM		Test notes e.g. undisturbed, pre-existing shear, recompacted, rock joint, cut plane	Undisturbed		
	SHBG_PCOH	kN/m2	Peak cohesion intercept	5		
	SHBG_PHI	deg	Peak angle of friction	26.5		
	SHBG_RCOH	kN/m2	Residual cohesion intercept	1		
	SHBG_RPHI	deg	Residual angle of friction	13.0		
	FILE_FSET		Associated file reference	FS18		

• Further notes on laboratory test results are provided in Appendix 6 Section 5.

		0.1.0	ear Box Testing		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6331/A	Rev
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	6.50	
*	SHBT_TESN		Shear box stage number	1	
	SHBT_MC	%	Specimen initial moisture content	20	Del
	SHBT_BDEN	Mg/m3	Bulk density	1.96	
	SHBT_DDEN	Mg/m3	Dry density	1.63	
	SHBT_NORM	kN/m2	Shear box normal stress	100	
	SHBT_DISP	mm/min	Displacement rate	0.1	Rev
	SHBT_PEAK	kN/m2	Shear box peak shear stress	65.5	
	SHBT_RES	kN/m2	Shear box residual shear stress	47.2	Rev
	SHBT_PDIS	mm	Displacement at peak shear strength	2.35	
	SHBT_RDIS	mm	Displacement at residual shear strength	12.41	
	SHBT_PDEN	Mg/m3	Particle density. measured or, (#) assumed	2.65	
	SHBT_IVR		Initial voids ratio	0.5	
	SHBT_MCI	%	Initial moisture content	20	
	SHBT_MCF	%	Final moisture content	18	
	?SHBT_REM		Remarks on test stage	Reached end of travel	Nev

- Correction of typographical error. Example units of SHBT_RES should be kN/m2.
- SHBT_MC is marked for deletion as it is a repetition of SHBT_MCI which should be used in preference.
- SHBT_DISP example units updated to more conventional mm/min.
- ?SHBT_REM has been added to allow remarks to be associated with a test stage if appropriate.
- Further details on laboratory test results are provided in Appendix 6 Section 5.

Group N	lame : STCN	- Sta	tic Cone Penetration Test		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Re
*	STCN_DPTH	m	Depth of result for static cone test	12.10	
	STCN_TYP		Cone test type	PC (See Appendix 1)	
	STCN_REF		Cone identification reference	PQ47	
	STCN_FORC	kN	Axial force (Qc)		De
	STCN_FRIC	kN	Frictional force on sleeve (Qs)		De
	STCN_RES	MN/m2	Cone resistance	20	
	STCN_FRES	kN/m2	Local unit side friction resistance	1000	
	STCN_PWP1	kN/m2	Porewater pressure	15.0	
	STCN_PWP2	kN/m2	Second porewater pressure	15.0	
	STCN_PWP3	kN/m2	Third porewater pressure	15.0	
	STCN_CON	uS/cm	Conductivity	0.01	
	STCN_TEMP	DegC	Temperature	10	
	STCN_PH		pH reading	7.2	
	STCN_SLP1	deg	Slope Indicator no. 1	4.1	
	STCN_SLP2	deg	Slope Indicator no. 2	6.3	
	STCN_REDX	mV	Redox potential reading	13.3	
	STCN_FFD	%	Fluorescence intensity	96.3	
	STCN_PMT	counts/s	Photo-multiplier tube reading	26	
	STCN_PID	uV	Photo ionization detector reading	3650	
	STCN_FID	uV	Flame ionization detector reading	151260	
	FILE_FSET		Associated file reference	FS12	

Notes for Guidance

• The cone penetration data group STCN is the subject of on-going discussion. Please refer to the data format website discussion boards http://www.ags.org.uk for more information. This group will be updated in the next edition of the AGS Data Format.

Group Name : SUCT - Suction Tests					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	7
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	1	
*	SPEC_DPTH	m	Specimen depth	6.60	
	SUCT_METH		Test method	Chandler	
	SUCT_VAL	kN/m2	Suction value	50	

Froup N	lame : TNPC	- Te	n Per Cent Fines		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6321/A	
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	25	
*	SAMP_TYPE		Sample type	B (See Appendix 1)	
*	SPEC_REF		Specimen reference number	2	
*	SPEC_DPTH	m	Specimen Depth	6.50	
	TNPC_TESN		Ten per cent fines test number	1	
	TNPC_REM		Notes on testing as per BS 812		
	TNPC_DRY	kN	10% fines values on dry aggregate	70	
	TNPC_WET	kN	10% fines value on wet aggregate	60	
	FILE_FSET		Associated file reference	FS19	

Group N	Group Name : ?TREM - Time Related Remarks					
Status	Heading	Unit	Description	Example		
*	?HOLE_ID		Exploratory hole or location equivalent	G12	New	
*	?TREM_DATE	dd/mm/yyyy	Date of remark	16/05/2001	New	
*	?TREM_TIME	hhmmss	Time of remark	120000	New	
	?TREM_REM		Time related remark	Completion of concrete pour for slab G12	New	
	?FILE_FSET		Associated File Reference	FS28	New	

- The ?TREM group has been added to include the AGS-M format data groups and headings (ref CIRIA Project Report 82, 2002).
- The ?HOLE_ID heading has been added to the group to comply with Rule 6a. ?HOLE_ID could be used to refer to any site location including exploratory hole locations.
- The use of ?TREM for include time based observations and incidents is discussed in Appendix 6 Section 24.

Group N	Group Name : TRIG - Triaxial Test - General					
Status	Heading	Unit	Description	Example		
*	HOLE_ID		Exploratory hole or location equivalent	6431/A		
*	SAMP_TOP	m	Depth to TOP of test sample	6.50		
*	SAMP_REF		Sample reference number	12		
*	SAMP_TYPE		Sample type	U (See Appendix 1)		
*	SPEC_REF		Specimen reference number	3		
*	SPEC_DPTH	m	Specimen depth	6.80		
	TRIG_TYPE		Test type	UU (See Appendix 1)		
	TRIG_COND		Sample condition	Undisturbed		
	TRIG_REM		Test method, additional information, failure criteria.			
	TRIG_CU	kN/m2	Value of undrained shear strength	75		
	TRIG_COH	kN/m2	Cohesion intercept associated with TRIG_PHI	2		
	TRIG_PHI	deg	Angle of friction for effective shear strength triaxial test	32		
	FILE_FSET		Associated file reference	FS7		

Notes for Guidance

Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group N	lame : TRIX	- Tria	axial Test		
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6431/A	R
*	SAMP_TOP	m	Depth to TOP of test sample	6.50	
*	SAMP_REF		Sample reference number	12	
*	SAMP_TYPE		Sample type	U (See Appendix 1)	
*	SPEC_REF		Specimen reference number	3	
*	SPEC_DPTH	m	Specimen depth	6.80	
*	TRIX_TESN		Triaxial test/stage number	1	
	TRIX_SDIA	mm	Specimen diameter	38	
	TRIX_MC	%	Specimen initial moisture content	15	
	TRIX_CELL	kN/m2	Total cell pressure	100	
	TRIX_DEVF	kN/m2	Deviator stress at failure	360	
	TRIX_SLEN	mm	Sample length	76	
	TRIX_BDEN	Mg/m3	Initial bulk density	2.12	
	TRIX_DDEN	Mg/m3	Initial dry density	1.84	
	TRIX_PWPF	kN/m2	Porewater pressure at failure	60	
	TRIX_PWPI	kN/m2	Porewater pressure at start of shear stage	50	
	?TRIX_CU	kN/m2	Value of Undrained Shear Strength	180	۸
	TRIX_STRN	%	Strain at failure	9	
	TRIX_MODE		Mode of failure	Brittle, plastic	

- Individual stage undrained shear strength values should be included as ?TRIX_CU. TRIG_CU can only include a single value per sample. In a multi-stage test or a set of 3 specimens TRIG_CU would therefore need to be interpreted from the stage values. Interpretation is usually beyond the remit of the geotechnical testing laboratory.
- Further notes on laboratory test results are provided in <u>Appendix 6 Section 5</u>.

Group Name : UNIT - Definition of <units> and CNMT_UNIT</units>					
Status	Heading	Unit	Description	Example	
*	UNIT_UNIT		Unit Used	ohmcm	
	UNIT_DESC		Description	Ohm centimetres	

Notes for Guidance

Further notes on reporting units within an AGS format data file are provided in <u>Appendix 6 Section 6</u>.

Group Name : WETH - Weathering Grades					
Status	Heading	Unit	Description	Example	
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	F
*	WETH_TOP	m	Depth to TOP of weathering subdivision	3.50	
*	WETH_BASE	m	Depth to BASE of weathering subdivision	3.95	
	WETH_GRAD		Material weathering grade	IV	
	WETH_REM		Remarks, weathering system used	Geoguide 3	

Group Name : WSTK - Water Strike Details					
Status	Heading	Unit	Description	Example	-
*	HOLE_ID		Exploratory hole or location equivalent	6421/A	Re
*	WSTK_DEP	m	Depth to water strike	17.20	
*	WSTK_NMIN	min	Minutes after strike	20	
	WSTK_CAS	m	Casing depth at time of water strike	15.70	
WSTK_TI	WSTK_DATE	dd/mm/yyyy	Date of water strike	19/03/1991	
	WSTK_TIME	hhmm	Time of water strike	1640	
	WSTK_POST	m	Depth to water after WSTK_NMIN minutes	10.23	
	WSTK_FLOW		Flow rate remarks	Steady flow of water into hole	
	WSTK_SEAL	m	Depth at which water strike sealed by casing	19.10	

APPENDIX 1

Pick Lists

Groups ABBR, CODE and UNIT

Introduction

Codes or abbreviations are used in a number of the AGS Format Groups in order to ensure consistency in terminology and for brevity. This Appendix defines a series of 'pick' lists of the standard codes and abbreviations and the Group and Field in which each is to be used.

The CNMT and ?ICCT Groups are used for all chemical test results. The codes used in the CNMT_TYPE Field of the CNMT Group or the ?ICCT_TYPE of the ?ICCT Group define the determinand tested. The standard codes are given in the CODE Group 'pick' list below. For all other Groups the standard abbreviations are given in the ABBR Group 'pick' list below.

Whilst these lists are extensive, they are not intended to be exhaustive and it may be necessary to use some additional codes on a specific project.

All the abbreviations and codes used in any Group within an AGS Format submission must be defined in the ABBR and CODE Groups included in the submission. This applies to both standard codes given in the following 'pick' lists, and user defined, project specific codes.

The units used to report test results must be stated in the <UNITS> line of each Group and for chemical testing must be given in the CNMT_UNIT field of the CNMT Group or ?ICCT_UNIT field of the ?ICCT Group. The abbreviations to be used for standard units are given in the UNIT 'pick' list below. All units used in an AGS Format submission must be defined in a UNIT group. This applies to both standard units given in the following 'pick' list and user defined units.

This page left intentionally blank

Abbreviations Definitions

Notes for Guidance

- See <u>Appendix 6, Section 7</u> for general guidelines on abbreviations.
- Combined abbreviations may be used as appropriate from the ABBR 'pick' list; e.g. IP+CP+RC
- See Appendix 6, Section 11 on the use of amalgamated samples.
- See Appendix 6, Section 18 on the use of in-situ testing abbreviations.
- Additional codes for HOLE_TYPE and ROCK_PLTF have been added to standardise the more common definitions.
- Codes have been added for ?MONP_TYPE and additional items added for HOLE_TYPE have been added to include the AGS-M format abbreviations (ref CIRIA Project Report 82, 2002)
- New codes have been added for GEOL_LEG to aid standardisation.

Group Name : ABBR - Abbreviations Definitions			
ABBR_HDNG	ABBR_CODE	ABBR_DESC	
BKFL_LEG	901	Sand backfill	Nev
BKFL_LEG	902	Gravel backfill	Nev
BKFL_LEG	903	Bentonite	Nev
BKFL_LEG	904	Grout	Nev
BKFL_LEG	905	Arisings	Nev
BKFL_LEG	906	Concrete	Nev
CNMT_TTYP	GAS	Gas	
CNMT_TTYP	LIQUID	Liquid	
CNMT_TTYP	SOLID	Solid	
CNMT_TTYP	SOLID_11WAT	Solid (1:1 Soil/Water extract)	Nev
CNMT_TTYP	SOLID_21WAT	Solid (2:1 Soil/Water extract)	
CNMT_TTYP	SOLID_ACID	Solid (Acid extract)	
CNMT_TTYP	SOLID_AVAIL	Solid (Available)	
CNMT_TTYP	SOLID_DRY	Solid (Dry weight)	
CNMT_TTYP	SOLID_EDTA	Solid (EDTA extract)	
CNMT_TTYP	SOLID_FREE	Solid (Free)	
CNMT_TTYP	SOLID_PRES	Solid (Presence of)	
CNMT_TTYP	SOLID_TOT	Solid(Total)	
CNMT_TTYP	SOLID_WAT	Solid (Water extract)	
CNMT_TTYP	WATER	Water	
CNMT_TTYP	WATER_ACIDHY	Water (Acid hydrolysable)	
CNMT_TTYP	WATER_DISS	Water (Dissolved)	
CNMT_TTYP	WATER_ELEM	Water(Elemental)	
CNMT_TTYP	WATER_FREE	Water (Free)	
CNMT_TTYP	WATER_ORG	Water (Organic)	
CNMT_TTYP	WATER_PRES	Water (Presence of)	
CNMT_TTYP	WATER_SOLRE	Water (Soluble reactive)	
CNMT_TTYP	WATER_TOT	Water (Total)	
CNMT_TTYP	LEACHATE	Leachate	
CNMT_TTYP	LEACHATE_TOT	Leachate (Total)	
CNMT_TTYP	LEACHATE_FREE	Leachate (Free)	
CNMT_TTYP	LEACHATE_DISS	Leachate (Dissolved)	Nev
DISC_TERM	D	Terminates against another discontinuity	
DISC_TERM	R	Terminates within rock	

ABBR_HDNG	ABBR_CODE	ABBR_DESC	
DISC_TERM	X	Extends beyond exposure	
FILE DOCT	CR	Construction record	
FILE DOCT	GEN	General	
FILE DOCT	MS	Method statement	
FILE_DOCT	TECH	Technical paper	
FILE_DOCT	PH	Photograph	
FILE_DOCT	REP	Report	
FILE_DOCT	VI	Video clip	
FILE_DOCT	DRAW	Drawing	
FILE DOCT	CAL	Calibration data	
FILE DOCT	RAW	Raw data	
GEOL LEG	101	TOPSOIL	
GEOL_LEG	102	MADE GROUND	
GEOL_LEG	104	CONCRETE	
GEOL_LEG	201	CLAY	
GEOL_LEG	202	Silty CLAY	
GEOL_LEG	203	Sandy CLAY	
GEOL_LEG	204	Gravelly CLAY	
GEOL_LEG	205	Cobbly CLAY	
GEOL_LEG GEOL_LEG	206	Bouldery CLAY	
GEOL_LEG GEOL_LEG	206	Silty sandy CLAY	
GEOL_LEG GEOL_LEG	208	Silty gravelly CLAY	
GEOL_LEG	208	Silty cobbly CLAY	
	210	Silty bouldery CLAY	
GEOL_LEG	-		
GEOL_LEG	211	Silty sandy gravelly CLAY	
GEOL_LEG	212	Silty sandy cobbly CLAY	
GEOL_LEG	213	Silty sandy bouldery CLAY	
GEOL_LEG	214	Silty sandy gravelly cobbly CLAY	
GEOL_LEG	215	Silty sandy gravelly bouldery CLAY	
GEOL_LEG	216	Silty sandy gravelly cobbly bouldery CLAY	
GEOL_LEG	217	Silty sandy organic CLAY	
GEOL_LEG	218	Silty sandy gravelly organic CLAY	
GEOL_LEG	219	Silty organic CLAY	
GEOL_LEG	220	Sandy gravelly CLAY	
GEOL_LEG	222	Sandy cobbly CLAY	
GEOL_LEG	223	Sandy bouldery CLAY	
GEOL_LEG	224	Sandy gravelly cobbly CLAY	
GEOL_LEG	225	Sandy gravelly bouldery CLAY	
GEOL_LEG	226	Sandy gravelly cobbly bouldery CLAY	
GEOL_LEG	227	Sandy organic CLAY	
GEOL_LEG	228	Sandy gravelly organic CLAY	
GEOL_LEG	229	Organic CLAY	
GEOL_LEG	301	SILT	
GEOL_LEG	302	CLAY/SILT	
GEOL_LEG	303	Sandy SILT	
GEOL_LEG	304	Gravelly SILT	
GEOL_LEG	305	Organic SILT	
GEOL_LEG	310	Sandy gravelly SILT	
GEOL_LEG	314	Clayey sandy gravelly organic cobbly SILT	
GEOL_LEG	316	Sandy cobbly SILT	
GEOL_LEG	317	Sandy bouldery SILT	
GEOL_LEG	318	Sandy organic SILT	
GEOL_LEG	319	Sandy gravelly organic SILT	
GEOL_LEG	320	Sandy gravelly cobbly SILT	

Group Name : ABBR - Abbreviations Definitions			
ABBR_HDNG	ABBR_CODE	ABBR_DESC	
GEOL_LEG	321	Sandy gravelly organic cobbly SILT	۸
GEOL_LEG	322	Gravelly cobbly SILT	٨
GEOL_LEG	323	Gravelly bouldery SILT	٨
GEOL_LEG	324	Gravelly organic SILT	٨
GEOL_LEG	325	Gravelly organic cobbly SILT	۸
GEOL_LEG	326	Cobbly SILT	۸
GEOL_LEG	327	Cobbly bouldery SILT	۸
GEOL_LEG	328	Organic cobbly SILT	۸
GEOL_LEG	331	Bouldery SILT	۸
GEOL_LEG	401	SAND	٨
GEOL_LEG	402	Clayey SAND	٨
GEOL_LEG	403	Silty SAND	۸
GEOL_LEG	404	Gravelly SAND	۸
GEOL_LEG	405	Cobbly SAND	۸
GEOL_LEG	406	Bouldery SAND	٨
GEOL_LEG	410	Clayey gravelly SAND	۸
GEOL_LEG	411	Clayey gravelly cobbly SAND	۸
GEOL_LEG	412	Silty gravelly SAND	٨
GEOL_LEG	413	Silty gravelly cobbly SAND	۸
GEOL_LEG	414	Silty gravelly cobbly bouldery SAND	۸
GEOL_LEG	415	Gravelly cobbly SAND	
GEOL_LEG	416	Gravelly cobbly bouldery SAND	
GEOL_LEG	417	Gravelly bouldery SAND	
GEOL_LEG	418	Cobbly bouldery SAND	
GEOL_LEG	430	SAND and GRAVEL	
GEOL_LEG	431	Organic SAND	
GEOL_LEG	433	Silty organic SAND	
GEOL_LEG	434	Gravelly organic SAND	
GEOL_LEG	435	Cobbly organic SAND	
GEOL_LEG GEOL_LEG	436	Bouldery organic SAND	
GEOL_LEG GEOL_LEG	501	GRAVEL	
	502	Clayey GRAVEL	
GEOL_LEG			^^
GEOL_LEG	503	Silty GRAVEL	
GEOL_LEG	504	Sandy GRAVEL	^^
GEOL_LEG	505	Organic GRAVEL	^^
GEOL_LEG	506	Cobbly GRAVEL	^
GEOL_LEG	507	Bouldery GRAVEL	^^
GEOL_LEG	509	Clayey sandy GRAVEL	^^
GEOL_LEG	510	Clayey cobbly GRAVEL	^
GEOL_LEG	511	Clayey bouldery GRAVEL	^
GEOL_LEG	512	Clayey organic GRAVEL	^
GEOL_LEG	517	Clayey sandy organic GRAVEL	^
GEOL_LEG	520	Silty sandy GRAVEL	^
GEOL_LEG	521	Silty cobbly GRAVEL	۸
GEOL_LEG	522	Silty bouldery GRAVEL	٨
GEOL_LEG	523	Silty organic GRAVEL	٨
GEOL_LEG	524	Silty organic sandy GRAVEL	٨
GEOL_LEG	525	Sandy cobbly GRAVEL	٨
GEOL_LEG	526	Sandy bouldery GRAVEL	۸
GEOL_LEG	527	Sandy organic GRAVEL	۸
GEOL_LEG	528	Silty sandy cobbly GRAVEL	۸
GEOL_LEG	601	PEAT	۸
GEOL_LEG	602	Clayey PEAT	٨
GEOL_LEG	603	Silty PEAT	

Group Name : ABBR - Abbreviations Definitions			
ABBR_HDNG	ABBR_CODE	ABBR_DESC	
GEOL_LEG	604	Sandy PEAT	
GEOL_LEG	605	Gravelly PEAT	
GEOL_LEG	606	Cobbly PEAT	
GEOL_LEG	608	Clayey sandy PEAT	
GEOL_LEG	609	Clayey gravelly PEAT	
GEOL_LEG	612	Silty sandy PEAT	
GEOL_LEG	613	Silty sandy gravelly PEAT	
GEOL_LEG	614	Sandy gravelly PEAT	
GEOL_LEG	701	COBBLES	
GEOL_LEG	702	Clayey COBBLES	
GEOL_LEG	703	Silty COBBLES	
GEOL_LEG	704	Sandy COBBLES	
GEOL_LEG	705	Gravelly COBBLES	
GEOL_LEG	706	Organic COBBLES	
GEOL_LEG	708	Clayey sandy COBBLES	
GEOL_LEG	709	Clayey gravelly COBBLES	
GEOL_LEG	713	Silty sandy COBBLES	
GEOL_LEG	714	Silty gravelly COBBLES	
GEOL_LEG	715	Silty organic COBBLES	
GEOL_LEG	716	Silty gravelly sandy COBBLES	
GEOL_LEG	717	Silty sandy organic COBBLES	
GEOL_LEG	718	Silty sandy gravelly organic COBBLES	
GEOL_LEG	719	Sandy gravelly COBBLES	
GEOL_LEG	720	Sandy organic COBBLES	
GEOL_LEG	720	Gravelly organic COBBLES	
GEOL_LEG GEOL_LEG	725	COBBLES and BOULDERS	
	730	BOULDERS	
GEOL_LEG			
GEOL_LEG	731	Gravelly cobbly BOULDERS	1
GEOL_LEG	801	MUDSTONE	1
GEOL_LEG	802	SILTSTONE	4
GEOL_LEG	803	SANDSTONE	
GEOL_LEG	804	LIMESTONE	
GEOL_LEG	805	CHALK	
GEOL_LEG	806	COAL	
GEOL_LEG	807	BRECCIA	
GEOL_LEG	808	CONGLOMERATE	
GEOL_LEG	809	Fine grained IGNEOUS	
GEOL_LEG	810	Medium grained IGNEOUS	
GEOL_LEG	811	Coarse grained IGNEOUS	
GEOL_LEG	812	Fine grained METAMORPHIC	
GEOL_LEG	813	Medium grained METAMORPHIC	
GEOL_LEG	814	Coarse grained METAMORPHIC	
GEOL_LEG	815	Pyroclastic (volcanic ash)	
GEOL_LEG	816	Gypsum, Rocksalt	
GEOL_LEG	999	Void	
GRAD_TYPE	DS	Dry sieve	
GRAD_TYPE	HY	Hydrometer	
GRAD_TYPE	PP	Pipette	
GRAD_TYPE	WS	Wet sieve	
HOLE _TYPE	ABS	Automatic Ballast Sampler	
HOLE_TYPE	СН	Slope surface protection stripping	
HOLE_TYPE	CP	Cable percussion (shell and auger)	
HOLE_TYPE	DCP	Dynamic cone penetrometer	
HOLE_TYPE	DP	Dynamic probe sampling	

Group Name	: ABBR -	Abbreviations Definitions	
ABBR_HDNG	ABBR_CODE	ABBR_DESC	
HOLE_TYPE	EXP	Logged exposure	
HOLE_TYPE	GCOP	GCO probe	
HOLE_TYPE	НА	Hand Auger	Ne
HOLE_TYPE	ICBR	in situ CBR test (see note 2)	
HOLE TYPE	IDEN	in situ density test (see note 2)	
HOLE_TYPE	INST	instrument	
HOLE_TYPE	IRDX	in situ redox test (see note 2)	
HOLE_TYPE	IRES	in situ resistivity (see note 2)	
HOLE_TYPE	IVAN	in situ penetration vane test (see note 2)	
HOLE_TYPE	IP	Inspection pit	
HOLE_TYPE	OP	Observation pit/trench	
HOLE_TYPE	PM	Pressuremeter test hole	Ne
HOLE TYPE	RC		
_	RCG	Rotary cored	
HOLE_TYPE		Rotary drilling in common ground	
HOLE_TYPE	RO	Rotary open hole	
HOLE_TYPE	S	Shaft	Ne
HOLE_TYPE	SCP	Static cone penetrometer	_
HOLE_TYPE	TP	Trial pit/trench	_
HOLE_TYPE	TRAV	Linear logging traverse or scanline survey	
HOLE_TYPE	VC	Vibrocore	
HOLE_TYPE	W	Wash boring	
HOLE_TYPE	WLS	Dynamic (windowless) sampler	Ne
HOLE_TYPE	WS	Window Sampler	Ne
INST_TYPE	EPCE	Embedment pressure cell - electronic	
INST_TYPE	EPCH	Embedment pressure cell - hydraulic	
INST_TYPE	EPCP	Embedment pressure cell - pneumatic	
INST_TYPE	ESET	Electronic settlement cell/gauges	
INST_TYPE	HSET	Hydraulic settlement cell/gauges	
INST_TYPE	IPCE	Interface pressure cell - electronic	
INST_TYPE	IPCH	Interface pressure cell - hydraulic	
INST_TYPE	IPCP	Interface pressure cell - pneumatic	
INST_TYPE	MSET	Levelling point or plate	
INST_TYPE	PPCE	Push in pressure cell - electronic	
INST_TYPE	PPCH	Push in pressure cell - hydraulic	
INST_TYPE	PPCP	Push in pressure cell - pneumatic	
INST_TYPE	PSET	Pneumatic settlement cell/gauges	
INST_TYPE	XSET	Extensometer settlement point	
ISPT_TYPE	С	Cone	
ISPT_TYPE	S	Split spoon	\dashv
MONP_TYPE	DM	Discontinuity monitoring	Ne
MONP_TYPE	TMU	Tiltmeter - Uniaxial	Ne
MONP TYPE	TMB	Tiltmeter – Biaxial	- Ne
MONP_TYPE	ICM	Inclinometer - Manual	- Ne
MONP_TYPE	ICE	Inclinometer – Electronic	- Ne
MONP_TYPE	LC	Load cell	- N
MONP_TYPE	ETR	Rod Extensometer	- Ne
	-		
MONP_TYPE	ETM	Magnetic Extensometer	_ Ne
MONP_TYPE	ETT	Tape Extensometer	_ Ne
MONP_TYPE	EPCE	Embedment pressure cell – electronic	Ne
MONP_TYPE	EPCH	Embedment pressure cell – hydraulic	Ne
MONP_TYPE	EPCP	Embedment pressure cell – pneumatic	Ne
MONP_TYPE	IPCE	Interface pressure cell – electronic	Ne
MONP_TYPE	IPCH	Interface pressure cell – hydraulic	Ne
MONP_TYPE	IPCP	Interface pressure cell – pneumatic	Ne

ABBR_HDNG	ABBR_CODE	ABBR_DESC	
MONP_TYPE	PPCE	Push in pressure cell – electronic	
MONP_TYPE	PPCH	Push in pressure cell – hydraulic	
MONP_TYPE	PPCP	Push in pressure cell – pneumatic	
MONP_TYPE	MSET	Levelling point or plate	
MONP_TYPE	TS	Total station point	
MONP_TYPE	ESET	Electronic settlement cell/gauges	
MONP_TYPE	HSET	Hydraulic settlement cell/gauges	
MONP_TYPE	PSET	Pneumatic settlement cell/gauges	
MONP_TYPE	SP	Standpipe	
MONP_TYPE	SPIE	Standpipe piezometer	
MONP_TYPE	HPIE	Hydraulic piezometer	
MONP_TYPE	PPIE	Pneumatic Piezometer	
MONP_TYPE	EPIE	Electronic Piezometer	
MONP_TYPE	SG	Strain gauge	
MONP_TYPE	TP	Temperature measuring point	
MONP_TYPE	GWMP	Groundwater monitoring point	
MONP_TYPE	GMP	Gas monitoring point	
MONP_TYPE	SLIP	Slip indicator	
PREF_TYPE	SP	Standpipe	
PREF_TYPE	SPIE	Standpipe piezometer	
PREF_TYPE	HPIE	Hydraulic piezometer	
PREF_TYPE	PPIE		
	EPIE	Pneumatic piezometer	
PREF_TYPE	1	Electronic piezometer	
PROF_TYPE	INCL	Inclinometer	
PROF_TYPE	SLIP	Slip indicator	
PRTD_TYPE	SBP	Self boring pressuremeter	
PRTD_TYPE	HPD	High pressure dilatometer	
PRTD_TYPE	WRSBP	Weak rock self boring pressuremeter	
PRTD_TYPE	MPM	Menard type pressuremeter	
PRTD_TYPE	PIP	Push-in pressuremeter	
ROCK_PLTF	A	Axial	
ROCK_PLTF	D	Diametral	
ROCK_PLTF	L	Parallel to planes of weakness	
ROCK_PLTF	Р	Perpendicular to planes of weakness	
ROCK_PLTF	I	Irregular lump	
ROCK_PLTF	В	Block	
SAMP_TYPE	AMAL	Amalgamated sample (see note 3)	
SAMP_TYPE	В	Bulk disturbed sample	
SAMP_TYPE	BLK	Block sample	
SAMP_TYPE	С	Core sample	
SAMP_TYPE	CBR	CBR mould sample	
SAMP_TYPE	D	Small disturbed sample	
SAMP_TYPE	G	Gas sample	
SAMP_TYPE	LB	Large bulk disturbed sample (for earthworks testing)	
SAMP_TYPE	М	Mazier type sample	
SAMP_TYPE	Р	Piston sample	
SAMP_TYPE	SPTLS	Standard penetration test liner sample	
SAMP_TYPE	TW	Thin walled push in sample	
SAMP_TYPE	U	Undisturbed sample - open drive	
SAMP_TYPE	W	Water sample	
SAMP_TYPE	ES	Soil sample for environmental testing	
SAMP_TYPE	EW	Water sample for environmental testing	
STCN_TYP	СС	Conductivity cone	
STCN_TYP	EC	Electric cone	

Group Name : ABBR - Abbreviations Definitions			
ABBR_HDNG	ABBR_CODE	ABBR_DESC	
STCN_TYP	FFD	Fuel fluorescence cone	
STCN_TYP	MC	Mechanical cone	
STCN_TYP	PC	Piezo cone	
STCN_TYP	TC	Temperature cone	
TRIG_TYPE	CD	Consolidated drained (single stage)	
TRIG_TYPE	CDM	Consolidated drained (multi-stage)	
TRIG_TYPE	CU	Consolidated undrained with pwp measurement (single stage)	
TRIG_TYPE	CUM	Consolidated undrained with pwp measurement (multi-stage)	
TRIG_TYPE	UU	Unconsolidated quick undrained (single stage)	
TRIG_TYPE	UUM	Unconsolidated quick undrained (multi-stage)	

Chemical Testing Codes (CNMT_TYPE)

Notes for Guidance

- Additional codes have been added including:
 - The HCARS code has been marked for deletion in the next edition as it is a duplicate of PAHS
 - To clarify sulphate test results, codes of SO3 and SO4 have been added to replace the SULWS code.
- A searchable listing is available on the data format web site http://www.ags.org.uk.
- If further codes are required to define chemical constituents please ensure they are entered on the AGS data format discussion boards (http://www.ags.org.uk).
- Remember that combined codes must not be used from the CODE 'pick' list.

Group Name : CO	DE - Chemical Testing Codes			
CODE_CODE	CODE_DESC			
11BIP	1,1 - Biphenyl	1,1 - Biphenyl		
11DEA	1,1 - Dichloroethane			
11DEE	1,1 - Dichloroethene			
11DCP	1,1 - Dichloropropene	- Dichloropropene		
111TCE	1,1,1 - Trichloroethane	• •		
1112TCE	1,1,1,2 - Tetrachloroethane			
112T122T	1,1,2 - Trichloro - 1,2,2 - Trifluoroethane			
112TCE	1,1,2 - Trichloroethane			
1122TCE	1,1,2,2 - Tetrachloroethane			
12BIP	1,2 - Biphenyl			
12D3C	1,2 - Dibromo - 3 - Chloropropane			
12DIB	1,2 - Dibromoethane			
12DB	1,2 - Dichlorobenzene			
12DEA	1,2 - Dichloroethane			
12DP	1,2 - Dichloropropane			
123TCB	1,2,3 - Trichlorobenzene			
123TCP	1,2,3 - Trichloropropane			
124TCB	1,2,4 - Trichlorobenzene			
124TMB	1,2,4 - Trimethylbenzene			
13DB	1,3 - Dichlorobenzene			
13DP	1,3 - Dichloropropane			
135TCB	1,3,5 - Trichlorobenzene			
135TMB	1,3,5 - Trimethylbenzene			
14DB	1,4 - Dichlorobenzene			
2BUT	2 - Butanone			
2CNAP	2 - Chloronaphthalene			
2CP	2 - Chlorophenol			
2CT	2 - Chlorotoluene			
2MNAP	2 - Methylnaphthalene			
2MP	2 - Methylphenol			
2NA	2 - Nitroaniline			
2NP	2 - Nitrophenol			
22DP	2,2 - Dichloropropane			
2346TCP	2,3,4,6 - Tetrachlorophenol			
24DCP	2,4 - Dichlorophenol			
24DMP	2,4 - Dimethylphenol			
24DNP	2,4 - Dinitrophenol			
24DNT	2,4 - Dinitrotoluene			
245TCP	2,4,5 - Trichlorophenol			
246TCP	2,4,6 - Trichlorophenol			

CODE_CODE	CODE_DESC	
26DCP	2,6 - Dichlorophenol 2,6 - Dinitrotoluene	
<u>26DNT</u> 3NA	3 - Nitroaniline	
33DCBZDNE	3.3'-Dichlorobenzidine	New
34MP	3,4 - Methylphenol	146W
4BPPE	4 - Bromophenylphenyl ether	
4C3MP	4 - Chloro - 3 - Methlphenol	
4CA	4 - Chloroaniline	
4CP	4 - Chlorophenol	
4CPPE	4 - Chlorophenyl phenyl ether	
4CT	4 - Chlorotoluene	
4IPT	4 - Isopropyltoluene	
4MP	4 - Methylphenol	
4NA	4 - Nitroaniline	
4NP	4 - Nitrophenol	
44DDD	4,4 - DDD	
44DDE	4,4 - DDE	
44DDE 44DDT	4,4 - DDT	
44DD1 46DN2MP	4,6-Dinitro-2-methylphenol	New
46DNZMP ACNEN	4,6-Dinitro-z-metnyipnenoi Acenaphthene	
	·	
ACNAP ACET	Acetaldahuda	
ACET	Acetaldehyde	
AIMS	Acid insoluble matter	
ACIDW	Acidity as Calcium carbonate	
ACALW	Acidity/Alkalinity	
ADSC	Aerobic dip slide colonies	
ALCO	Alcohols	
ALD	Aldrin	
ALKBW	Alkalinity - Bicarbonate as CaCO3	
ALKCW	Alkalinity - Carbonate as CaCO3	
ABHC	alpha - BHC	
AHCH	alpha - HCH	
AL	Aluminium	
AMET	Ametryn	
AMMOW	Ammonia	
AMMNS	Ammoniacal nitrogen	
ABC	Anaerobic bacteria count	
AIDW	Anionic detergents	Man
ANTHNN	Anthanthrene	New
ANTHN	Anthracene	
ANTHS	Anthrax (Presence of)	
SB	Antimony	
A1016	Aroclor 1016	
A1221	Aroclor 1221	
A1232	Aroclor 1232	
A1242	Aroclor 1242	
A1248	Aroclor 1248	
A1254	Aroclor 1254	
A1260	Aroclor 1260	
A1262	Aroclor 1262	
HYDRS	Aromatic hydrocarbons	
AS	Arsenic	
ASB	Asbestos	
ATZ	Atrazine	
AVF	Aviation fuel	
AZPE	Azinphos-ethyl	
AZPM	Azinphos-methyl	
AZB	Azobenzene	

PE - Chemical Testing Codes	
CODE_DESC	
Barium	
Benzene	
` '	
· · · · · · · · · · · · · · · · · · ·	
	Ne
	Ne Ne
	Ne Ne
· , ,	
	Ne
bis (2 - chloroethoxy) ether	
bis (2 - chloroethoxy) methane	
bis (2 - chloroethyl) ether	Ne Ne
bis (2 - chloroisopropyl) ether	
bis (2 - ethylhexyl) phthalate	Ne
Boron	
Bromide	
Bromobenzene	
Bromochloromethane	
·	
	Ne
Calcium hardness as Calcium carbonate	
Calorific value	
Carbaryl	
Carbazole	Ne
Carbofuran	
Carbon	Ne
Carbon dioxide	
Carbon Disulphide	Ne
Carbon monoxide	
Carbon tetrachloride	
Carbonate	
II interpreted hydrocarbone	I
Chlorinated hydrocarbons Chlorine	I
	Barium Benzo (a) anthracene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (chi) perylene Benzo (chi) perylene Benzo (chi) perylene Benzo (chi) perylene Benzo (chi) fluoranthene Benzo (chi) fluoranthene Benzo (chi) pervlene Benzole Acid Benzyl alcohol Beryllium beta - BHC beta - HCH Bicarbonate Bicarbonate Bicarbonate Bichlorobiphenyl Biochemical oxygen demand Biphenyl bis (2 - chloroethoxy) ether bis (2 - chloroethoxy) methane bis (2 - chloroethoxy) methane bis (2 - chloroisopropyl) ether bis (2 - chloroisopropyl) ether bis (2 - chloroisopropyl) ether bis (2 - chloroethoxy) pethane Bis (2 - chloroethoxy) pethane Bis (2 - chloroisopropyl) ether bis (2 - chl

Group Name : CO	DDE - Chemical Testing Codes	
CODE_CODE	CODE_DESC	
CBENZ	Chlorobenzene	
CETH	Chloroethane	
CHETH	Chloroethene	
CFM	Chloroform	
CMN	Chloromethane	
CNAP	Chloronaphthalene	
CNA	Chloronitroaniline	
CPHE	Chlorophenols (Total)	
CPYR	Chlorpyrifos	
CR	Chromium	
CRYN	Chrysene	
	·	
C13DP	cis - 1,3 - Dichloropropane	
12DEE	cis 1,2 - Dichloroethene	
13DCPE	cis 1,3 - Dichloropropene	
COALS	Coal tar derivatives	
со	Cobalt	
COLO	Coliform organisms	
COMBS	Combustibility	
CNCOMP	Complex Cyanide	New
CU	Copper	
CRES	Cresols	
CN	Cyanide	
CYPYRN	Cyclopenta (cd) pyrene	New
DECPB	Decachlorobiphenyl	
DECA	Decane	
DBHC	delta - BHC	
	Demeton - S	
DEMS		
DNOP	Di - n - octyl phthalate	
DIAZ	Diazinon	
DIABN	Dibenzo (ah) anthracene	
DBF	Dibenzofuran	
DIBM	Dibromochloromethane	
DBE	Dibromoethane	
DIBROM	Dibromomethane	
DBT	Dibutyl tin	
DCHLB	Dichlorobenzene (Total)	
DCFM	Dichlorodifluoromethane	
DICM	Dichloromethane	
DCPHE	Dichlorophenol (Total)	
DCV	Dichlorvos	
DIEL	Dieldrin	
DRO	Diesel range organics	
DEP	Diethyl phthalate	
GDIES	Diethyl sulphide	
DMETH	Dimethoate	
DIMP	Dimethyl phthalate	
DIMPH	Dimethylphenols	
DNBP	Di-n-butyl phthalate	New
DPE	Diphenyl ether	New
DO	Dissolved oxygen	
DST	Disulfoton	
DOCS	Docosane	
DOD	Dodecane	
DOTC	Dotriacontane	
EICO	Eicosane	
CONDW	Electrical conductivity	
EHW	Electrolytic potential	
ENDOI	Endosulfan I	

CODE_CODE	CODE_DESC	
ENDOII	Endosulfan II	
ENDSUL	Endosulfan sulphate	
ENDR	Endrin	
ENDALD	Endrin aldehyde	
ESCC	Escherichia Coli	
GETHA	Ethane	
GETHE	Ethene	
EPAR	Ethyl parathion	
ETHYL	Ethylbenzene	
EGLW	Ethylene glycol	
ETRP	Etrimphos	
FCOL	Faecal Coliforms	
FSTP	Faecal Streptococci	
FTT	Fenotrothion	
FENT	Fenthion	
FERCS	Ferricyanide	
FERFS	Ferro-ferricyanide	
FLNN	Fluoranthene	
FLN	Fluorene	
FLS	Fluoride	
FORMA	Formaldehyde	New
FTU	Formazin Turbidity Units	New
FCAM	Furancarboxaldehyde methyl-	
GBHC	gamma - BHC	
GHCH	gamma - HCH	
GPS	Gram Positive Spore	
HALO	Halogenated compounds	
GHEL	Helium 	
HEPC	Heptachlor	
HEPEPO	Heptachlor epoxide	
HEPPB	Heptachlorobiphenyl	
HEPD	Heptadecane	
HEPTE	Heptene	
HEPP	Heptenophos	
HCHLB	Hexachlorobenzene	
HEXPB	Hexachlorobiphenyl	
HEXBUT	Hexachloroputadiene	
HCCP	Hexachlorocyclopentadiene	
HCE	Hexachloroethane	
HEXAC HEXD	Hexacosane Hexadecane	
CRVI	Hexavalent Chromium	New
HDTS		New
	Hydrocarbons (Total)	
GHYD GHYDC	Hydrogen Hydrogen cyanide	
GHYDS INDP	Hydrogen sulphide Indeno (1,2,3 - cd) pyrene	
IOW IODP	lodide	
FE	lodofenphos	
FEIPB	Iron	
	iso - Propylbenzene	
ISOD	Isodrin	
ISOP	Isophorone	
IPP NITBS	Isopropyl phenol	
NITRS	Kjeldahl nitrogen (Total)	
PNEU LANGW	L Pneumophila bacterium Langelier Index	
I MINITO	n andener moex	

-	- Chemical Testing Codes	
CODE_CODE	CODE_DESC	1
LEG	Legionella bacterium	
LIND	Lindane	
LI	Lithium	New
IGNIS	Loss on ignition	
MXYL	m & p - Xylene	
MG	Magnesium	
MALTH	Malathion	
MANE	Maneb (ACN)	
MN	Manganese	
HG	Mercury	
METC	Methacriphos	
GMETH	Methane	
METXC	Methoxychlor	
METP	Methyl parathion	
METHP	Methylphenols	
MEVP	Mevinphos	
MOILS	Mineral oils	1
MOIST	Moisture content	1
MO	Molybdenum	1
MCHLB	Monochlorobenzene (Total)	1
MONPB	Monochlorobiphenyl	
MCPHE	Monochlorophenol (Total)	
MTBE	MTBE	
NBUT	n - Butylbenzene	
NNNP	n - Nitrosodi - n - Propylamine	
NNDPA	N - Nitrosodiphenylamine	Nev
NPB	n - Propylbenzene	- ' ' '
NAPTHH	Naphthalene	
NAP1M	Naphthalene 1 - methyl -	
NAP12D	Naphthalene 1,2 - dimethyl -	
NAPHOLS	Naphthols	
NI	Nickel	
NIRS	Nitrate	
NIIS	Nitrite	
NITB	Nitrobenzene	
GNIT	Nitrogen	
NONPB	Nonachlorobiphenyl	
NIDW	Nonionic detergents	
NONP NSOS	NSO/Resins	
OCP OVVI	o - Cresol	
OXYL	o - Xylene	
OCTPB OCTC	Octachlorobiphenyl	\dashv
OCTO	Octadosane	-
OCTD	Octadecane	\dashv
OMS	Organic matter	
PBLS	Organo lead	
TIOS	Organo tin	-
ORGS	Organosulphur compounds	-
ORTHS	Orthophosphate	4
GOX	Oxygen	4
PCP	p - Cresol	╣_
PAHS	Polynuclear aromatic hydrocarbons (Total)	Rev
PARTH	Parathion	4
PCB101S	PCB101	4
PCB118S	PCB118	4
PCB138S	PCB138	_
PCB153S	PCB153	11

Group Name : CODE	- Chemical Testing Codes	
CODE_CODE	CODE_DESC	1
PCB156S	PCB156	1
PCB180S	PCB180	1
PCB28S	PCB28	1
PCB31S	PCB31	1
PCB52S	PCB52	1
PCHLB	Pentachlorobenzene (Total)	
PENPB	Pentachlorobiphenyl	-
PNCP	Pentachlorophenol	1
PRO	Petrol range organics	1
PHS	pH	1
	<u> </u>	-
PPENN	Phenanthrene	-
PHE	Phenol	4
PHEMS	Phenol (Monohydric)	4
PHETS	Phenol (Total)	4
PHEIDX	Phenol Index	4
PHOR	Phorate	4
POSPM	Phosphamidon	4
PHOS	Phosphate	1
PHOTS	Phosphorous	1
PHTH	Phthalates (Total)	1
PIRIM	Pirimiphos	
PT	Platinum	New
PCBS	Polychlorinated biphenyls	
HCARS	Polynuclear aromatic hydrocarbons (Total)	Del
K	Potassium	
PPTDE	ppTDE	1
PROM	Prometryn	1
GPROP	Propane	1
PROPZ	Propazine	1
PROPP	Propetamphos	1
PGLW	Propylene glycol	1
PYRN	Pyrene	1
PYR	Pyridine	1
		1
RDN	Radon Radov potential	-
REPTW	Redox potential	1
RESO	Resorcinol	4
SALM	Salmonellae excluding S typhi	4
GSATH	Saturated hydrocarbons	4
SECB	sec - Butylbenzene	4
SE	Selenium	4
SILS	Silica	4
SI	Silicon	1
AG	Silver	1
SIMZ	Simazine	1
SIMT	Simetryne	1
NA	Sodium	1
SOLVS	Solvent extractable matter	1
STONE	Stone content	
SR	Strontium	
STY	Styrene	
SULWS	Sulphate	Del
SO3	Sulphate as SO3	New
SO4	Sulphate as SO4	New
SULIS	Sulphide	1
	<u> </u>	1
	·	1
		No.
		New
SULES TECZ TE TERB	Sulphur Tecnazene Tellurium Terbutryn	

Group Name : CO	DE - Chemical Testing Codes	
CODE_CODE	CODE_DESC	
TERTB	tert - Butylbenzene	
4CB	Tetrachlorobenzene (Total)	
ТЕТРВ	Tetrachlorobiphenyl	
TCE	Tetrachloroethane	
TETC	Tetrachloroethene	
TR4MS	Tetrachloromethane	
4TCP	Tetrachlorophenol (Total)	
TETRC	Tetracosane	
TETRD	Tetradecane	
THF	Tetrahydrofuran	
THT		
	Tetrahydrothiophene	
TTC	Tetratriacontane	
TL	Thallium	<i>N</i> еи
TCOL	Thermotolerant Coliforms	
THIOS	Thiocyanate	
SN 	Tin	
TI	Titanium	New
TOL	Toluene	
TCC	Total Coliform count	
DISS	Total dissolved solids	
THW	Total hardness	
TIC	Total inorganic carbon	
ORGCW	Total organic carbon	
TONIW	Total oxidised nitrogen	
TPH	Total petroleum hydrocarbons	
TPC	Total plate count	
SUSP	Total suspended solids	
TVC	Total viable count	
T12DE	Trans - 1,2 - Dichloroethene	
T13DP	Trans - 1,3 - Dichloropropene	
TCONT		
TRIZP	Triacontane Triazophos	
	<u> </u>	
TBM	Tribromomethane	
TBT	Tributyl tin	
TCHLB	Trichlorobenzene (Total)	
TRICPB	Trichlorobiphenyl	
TRCE	Trichloroethene	
TCFE	Trichlorofluoromethane	
TR3MS	Trichloromethane	
TCPHE	Trichlorophenol (Total)	
TRIZ	Trietazine	
TRIF	Trifluralin	
TMPHE	Trimethylphenols	
TPT	Triphenyl tin	
TURBW	Turbidity N T U	
UREA	Urea	
V	Vanadium	
VCHL	Vinyl chloride	
VFATW	Volatile fatty acids	
VSOLW	Volatile suspended solids	
	·	
VOLS	Volatiles	
XYL	Xylenols	
XEP	Xylenols & Ethylphenols	
ZN	Zinc	

UNIT_UNIT	UNIT_DESC
Length	Gimi_5266
mm	millimetre
cm	centimetre
m	metre
km	kilometre
in	inch
ft	foot
yd	yard
mi	mile
Area	
cm2	square centimetre
m2	square metre
km2	square kilometre
hect	hectare
in2	square inch
ft2	square foot
yd2	square yard
mi2	square mile
acre	acre
Volume	dolo
cm3	cubic centimetre
m3	cubic metre
l	litre
in3	cubic inch
ft3	cubic foot
yd3	cubic yard
gal	gallon
Force	gailott
	Newton
N kN	kiloNewton
MN	megaNewton
lbf	pounds force
tonf	tons force
kgf	kilograms force
Mass	Nilograms roice
	gram
g kg	gram
	kilogram megagram (tonne)
Mg lb	
	pound
kina	ton
kips	kilopound
Pressure	kiloNoutono per aquere metro
kN/m2	kiloNewtons per square metre
«Pa	kiloPascal
MN/m2	megaNewtons per square metre
MPa	megaPascal
GPa	gigaPascal
osi	pounds per square inch

Group Name : UNIT	T - Definition of <units>, CNMT_UNIT and ?ICCT_UNIT</units>	
ksi	kips per square inch	
ksf	kips per square foot	
tsf	tons per square foot	
kg/cm2	kilograms per square centimetre	
bar	bar	
Density		
kN/m3	kiloNewtons per cubic metre	
Mg/m3	megagrams per cubic metre	
pcf	pounds per cubic foot	
g/cm3	grams per cubic centimetre	
kg/m3	kilograms per cubic metre	
kg/m	kilograms per metre run	New
Time		
S	second	
min	minute	
hr	hour	
day	day	
month	month	
yr	year	
hhmm	hours minutes	
hhmmss	hours minutes seconds	
dd/mm/yyyy	day month year	
Velocity	day month year	
mm/s	millimetres per second	
cm/s	centimetres per second	
m/s		
	metres per second	
km/hr	kilometres per hour	
ft/min	feet per minute	
mph	miles per hour	
Flow	In.	
I/s	litres per second	
I/min	litres per minute	
m3/s	cubic metres per second	
gpm	gallons per minute	
mgd	million gallons per day	
cfs	cubic feet per second	
Concentration		
ug/l	micrograms per litre	
mg/l	milligrams per litre	
g/l	grams per litre	
ug/kg	micrograms per kilogram	
mg/kg	milligrams per kilogram	
ppb	parts per billion	
ppm	parts per million	
ppmv	Parts per million volume	New
%	percentage	
% dry weight	percentage of dry weight	
%vol	percentage volume	
ftu	Formazin turbidity units	New
%LEL	percentage of Lower Explosive Limit	New
colonies/ml	colonies per millilitre	

Group Name : UNIT -	Definition of <units>, CNMT_UNIT and ?ICCT_UNIT</units>
colonies/l	colonies per litre
CFU/ml	colony forming units per millilitre
CFU/g	colony forming units per gram
MPN/ml	most probable number per millilitre
MPN/100ml	most probable number per 100 millilitres
MPN/I	most probable number per litre
Miscellaneous	
m2/MN	square metres per megaNewton
ft2/t	square feet per ton
m2/yr	square metres per year
ft2/yr	square feet per year
ft2/day	square feet per day
Nm	Newton metre
deg	degree (angle)
DegC	degree Celsius
DegF	degree Fahrenheit
uV	microVolt
mV	milliVolt
ohm	Ohm
ohmcm	Ohm centimetre
uS/cm	microSiemens per centimetre
kJ/kg	kiloJoules per kilogram
counts/s	counts per second
Yes	Yes
No	No

APPENDIX 2

Example AGS Format File

This example AGS Format file is available for download to registered users on the AGS web site (http://www.ags.org.uk).

```
"**PRO.J"
"*PROJ ID"."*PROJ NAME"."*PROJ LOC"."*PROJ CLNT"."*PROJ ENG"."*PROJ CONT"."*PROJ DATE"."*?PROJ CID"."*?PROJ ISNO"."*PROJ AGS"."*FILE FSET"
"<UNITS>","","","","","dd/mm/yyyy","","","",""
"7845", "Trumpington Sewerage", "Trumpington", "Trumpington", "Trumpington District Council", "Geo-Knowledge International", "Lithosphere Investigations Ltd", "23/09/2004", "TRUMP001", "1.0", "3.1", "FS001"
"**HOLE"
"*HOLE ID", "*HOLE TYPE", "*HOLE NATE", "*HOLE NATN", "*HOLE GL", "*HOLE FDEP", "*HOLE STAR", "*HOLE LOG", "*FILE FSET"
"<UNITS>","","m","m","m","dd/mm/yyyy","",""
"TP501"."TP"."523196"."178231"."61.86"."3.25"."12/09/2004"."ANO"."FS002"
"BH502", "IP+CP", "523142", "178183", "58.72", "15.45", "13/09/2004", "ANO", "FS003"
"**?HDPH"
"*?HOLE ID"."*?HDPH_TOP","*?HDPH_BASE","*?HOLE_TYPE","*?HDPH_STAR","*?HDPH_STAT","*?HDPH_ENDD","*?HDPH_ENDT","*?HDPH_ENDT","*?HDPH_ENDT","*
"<UNITS>","m","m","","dd/mm/yyyy","hhmm","dd/mm/yyyy","hhmm",""
"BH502","0.00","1.20","IP","13/09/2004","0945","13/09/2004","1200","Hand dug"
"BH502"."1.20"."15.45"."CP"."13/09/2004"."1300"."14/09/2004"."1730"."Dando 150"
"**GEOL"
"*HOLE ID"."*GEOL TOP"."*GEOL BASE"."*GEOL DESC"."*GEOL LEG"."*GEOL GEOL"."*GEOL GEO2"."*GEOL STAT"."*FILE FSET"
"<UNITS>","m","m","","","","","","",""
"TP501","0.00","0.25", "Friable brown sandy CLAY with numerous rootlets (Topsoil)","101","TS","CLAY","A",""
"<CONT>","",",cation cracks with concentrations of rootlets. (Weathered Boulder Clay)","220","WBC","CLAY","B","
"TP501","1.55","3.25","Stiff grey closely fissured CLAY with a little fine to medium subrounded gravel and rare sandstone cobbles (Boulder Clay)","204","BC","CLAY","C",""
"BH502","0.00","0.30","Friable brown sandy CLAY with numerous rootlets (Topsoil)","101","TS","CLAY","",""
"BH502","0.30","2.60","Firm brown very closely fissured CLAY with a little fine to medium subrounded gravel (Weathered Boulder Clay)","204","WBC","CLAY","",""
"BH502","2.60","5.75","Stiff grey slightly sandy closely fissured CLAY with some fine to coarse subrounded gravel (Boulder Clay)", "220", "BC", "CLAY", "", "
"BH502", "5.75", "15.45", "Dense becoming very dense yellow brown very sandy fine to coarse subrounded GRAVEL (Glacial Gravels)", "504", "GG", "GRAVEL", "", ""
"**SAMP"
"*HOLE_ID", "*SAMP_TOP", "*SAMP_REF", "*SAMP_TYPE", "*SAMP_BASE", "*SAMP_DATE", "*SAMP_TIME", "*GEOL_STAT", "*FILE_FSET"
"<UNITS>","m","","m","dd/mm/yyyy","hhmmss","",""
"TP501","1.00","1","D","1.00","","","B",""
"TP501","1.00","2","B","1.30","","".""."B",""
"TP501","2.50","3","B","2.75","".""."C".""
"BH502","1.00","1","U","1.45","","","","","FS058"
"BH502","1.50","2","D","1.50","","","","","","",""
"BH502","3.00","3","U","3.45"."" "" ""
"BH502","3.50","4","D","3.50","","","",""
"BH502","6.00","5","D","6.45".""."""""
"BH502","6.00","6","B","6.50","","","",""
"BH502","9.00","7","D","9.45",""."".""
"BH502","9.00","8","B","9.50","","","".""
"BH502","10.00","9","B","10.50","","","","",""
"BH502","12.00","12","B","12.50","",""."".""
"BH502","3.00","10","W","3.00","14/09/2004","140000","",""
"BH502","3.00","11","W","3.00","14/09/2004","163000","",""
"**CLSS"
"*HOLE ID"."*SAMP TOP"."*SAMP REF"."*SAMP TYPE"."*SPEC REF"."*SPEC DPTH"."*CLSS NMC"."*CLSS LL"."*CLSS PL"
"<UNITS>","m","","","m","%","%","%"
"BH502","1.00","1","U","A","1.10","28","56","22"
"BH502"."1.00"."1"."U"."B"."1.25"."31"."62"."24"
"BH502","3.00","3","U","","","28","53","28"
"BH502","3.50","4","D","","","24","","
```



```
"*HOLE ID","*SAMP TOP","*SAMP REF","*SAMP TYPE","*SPEC REF","*SPEC DPTH","*CNMT TYPE","*CNMT TTYP","*CNMT RESL","*CNMT UNIT"
"BH502","3.00","11","W","","","PHS","WATER","7.2",""
"BH502","3.00","11","W","","","SO3","WATER","0.037"."a/l"
"BH502","3.00","11","W","","","CL","WATER","51","mg/l"
"BH502", "3.00", "10", "W", ", ", "SO3", "WATER", "0.040", "g/l'
"**ISPT"
"*HOLE ID","*ISPT TOP","*ISPT NVAL","*ISPT REP","*?ISPT CORN","*?ISPT EXTP","*ISPT TYPE"
"BH502"."9.00"."45"."5.7/8.10.12.15 N=45"."30".""."S"
"BH502","12.00","","15,18/20,30 (50/120)","","125","C"
"*HOLE ID", "*DETL TOP", "*DETL BASE", "*DETL DESC"
"<UNITS>"."m"."m"."
"BH502", "3.20", "3.45", "3.20-3.45 m Boulder of yellow brown sandstone, weak"
"BH502", "5.00", "5.00", "5.00m Becoming very stiff"
"BH502", "8.50", "9.70", "8.50-9.70 m Fine sand"
"**?MONP"
"*?HOLE ID", "*?MONP DIS", "*?MONP ID", "*?MONP DATE", "*?MONP TYPE"
"<UNITS>","m","","dd/mm/yyyy",""
"BH502"."14.30"."MON1"."14/09/2004"."SP"
"BH502"."2.50"."GAS1"."14/09/2004"."GMP"
"**?MONR"
"*?HOLE ID"."*?MONP DIS"."*?MONP ID"."*?MONR DATE"."*?MONR TIME"."*?MONR WDEP"
"<UNITS>","m","","dd/mm/yyyy","hhmmss","m"
"BH502"."14.30"."MON1"."14/09/2004"."183000"."2.32"
"BH502"."14.30"."MON1"."15/09/2004"."114500"."2.30"
"BH502" "14 30" "MON1" "22/09/2004" "143500" "2 25"
"BH502","14.30","MON1","29/09/2004","091500","2.27"
"**?ICCT"
"*?HOLE_ID","*?MONP_DIS","*?MONP_ID","*?ICCT_DATE","*?ICCT_TIME","*?ICCT_UNIT","*?ICCT_METH","*?CNMT_TYPE","*?CNMT_TTYP","*?ICCT_RESL"
"<UNITS>","m","","dd/mm/yyyy","hhmmss","","","","",""
"BH502", "2.50", "GAS1", "15/09/2004", "115500", "%vol", "GA 90", "GOX", "GAS", "20.1"
"BH502","2.50","GAS1","15/09/2004","115500","%vol","GA 90","GCARD","GAS","0.2"
"BH502","2.50","GAS1","22/09/2004","144000","%vol","GA 90","GOX","GAS","19.9"
"BH502", "2.50", "GAS1", "22/09/2004", "144000", "%vol", "GA 90", "GCARD", "GAS", "0.1"
"BH502"."2.50"."GAS1"."29/09/2004"."093000"."%vol"."GA 90"."GOX"."GAS"."20.2"
"BH502","2.50","GAS1","29/09/2004","093000","%vol","GA 90","GCARD","GAS","0.1"
"*FILE FSET"."*FILE NAME"."*FILE DESC"."*FILE TYPE"."*FILE PROG"."*?FILE DOCT"."*FILE DATE"
"<UNITS>","","","","dd/mm/yyyy"
"FS001", "siteplan.dwg", "Trumpington Sewerage site plan", "DWG", "AutoCAD Version 14", "DRAW", "24/08/1999"
"FS001","text.doc","Trumpington Sewerage geotechnical report text","DOC","Word97","REP","24/08/1999"
"FS002", "tp501p01.jpg", "Trial Pit TP501 photograph - east face", "JPG", "PaintShop Pro Version 5.0", "PH", "21/07/1999"
"FS002", "tp501p02.jpg", "Trial Pit TP501 photograph - west face", "JPG", "PaintShop Pro Version 5.0", "PH", "21/07/1999"
"FS003","bh502p01 jpg","Borehole BH502 inspection pit photograph","JPG","PaintShop Pro Version 5.0","PH","22/07/1999"
"FS058", "labp39.jpg", "Borehole BH502 photograph - split U100 sample 1.00-1.45m", "JPG", "PaintShop Pro Version 5.0", "PH", "20/08/1999"
```



```
"*DICT_TYPE"."*DICT_GRP"."*DICT_HDNG"."*DICT_STAT"."*DICT_DESC"."*DICT_UNIT"."*DICT_EXMP"."*?DICT_PGRP"
"HEADING", "ISPT", "ISPT CORN", "COMMON", "Corrected N value in sand", "", "20", ""
"HEADING","ISPT","ISPT_EXTP","COMMON","Extrapolated N value","","151",""
"HEADING", "PROJ", "PROJ_CID", "COMMON", "Monitoring contractor identifier". "", "KS123", ""
"HEADING", "PROJ", "PROJ ISNO", "COMMON", "Issue sequence number", "", "1.0", ""
"GROUP", "HDPH", "", "Depth related drilling information", "", "", "HOLE"
"HEADING"."HDPH"."HOLE ID"."KEY"."Exploratory hole or location equivalent".""."BH502".""
"HEADING","HDPH","HDPH_TOP","KEY","Depth to top of section","m","1.40",""
"HEADING", "HDPH", "HDPH BASE", "COMMON", "Depth to base of section", "m", "3.20", ""
"HEADING", "HDPH", "HOLE TYPE", "COMMON", "Type of exploratory Hole", "", "TP", ""
"HEADING"."HDPH "."HDPH STAR". "COMMON". "Date of start of section". "dd/mm/vvvv". "01/10/2004".""
"HEADING", "HDPH", "HDPH STAT", "COMMON", "Time of start of section", "hhmm", "1300", ""
"HEADING", "HDPH", "HDPH ENDD", "COMMON", "Date of end of section", "dd/mm/vvvv", "01/10/2004", ""
"HEADING", "HDPH", "HDPH ENDT", "COMMON", "Time of end of section", "hhmm", "1810", "
"HEADING","HDPH","HDPH_EXC","COMMON","Plant used","","JCB 3CX","
"GROUP","MONP","",","Monitor point","","","HOLE"
"HEADING", "MONP", "HOLE_ID", "KEY", "Exploratory hole or location equivalent", "", "BH502", ""
"HEADING", "MONP", "MONP_DIS", "KEY", "Distance of monitoring point from HOLE_ID", "m", "2.30", ""
"HEADING", "MONP", "MONP_ID", "KEY", "Monitoring Point Identifier", "", "ABC1", "
"HEADING","MONP","MONP_DATE","COMMON","Installation date","dd/mm/yyyy","13/12/2004",""
"HEADING", "MONP", "MONP TYPE", "COMMON", "Instrument type", "", "TS", "
"GROUP", "MONR", "", "", "Monitor point reading", "", "", "? MONP"
"HEADING", "MONR", "HOLE_ID", "KEY", "Exploratory hole or location equivalent", "", "BH502", ""
"HEADING", "MONR", "MONP DIS", "KEY", "Distance of monitoring point from HOLE ID", "m", "2.30", ""
"HEADING", "MONR", "MONP_ID", "KEY", "Monitoring Point Identifier", "", "ABC1", "
"HEADING", "MONR", "MONR_DATE", "KEY", "Date of reading", "dd/mm/yyyy", "31/08/2004", ""
"HEADING"."MONR"."MONR TIME"."KEY"."Time of reading"."hhmmss"."115500".""
"HEADING", "MONR", "MONR WDEP", "COMMON", "Depth to water from HOLE ID datum", "m", "6.42", ""
"HEADING", "FILE", "FILE_DOCT", "COMMON", "Document type", "", "PH", ""
"GROUP"."ICCT"."".""."Insitu contaminant and chemical testing"."".""."HOLE"
"HEADING", "ICCT", "HOLE ID", "KEY", "Exploratory hole or location equivalent", "", "BH502", ""
"HEADING"."ICCT"."MONP DIS"."KEY"."Distance of monitoring point from HOLE ID"."m"."2.30".""
"HEADING"."ICCT"."MONP ID"."KEY"."Monitoring Point Identifier".""."ABC1".""
"HEADING"."ICCT DATE"."KEY"."Date of reading"."dd/mm/vvvv"."31/08/2004".""
"HEADING", "ICCT", "ICCT TIME", "KEY", "Time of reading", "hhmmss", "115500", ""
"HEADING","ICCT","ICCT_UNIT","KEY","Test results unit","","%vol",""
"HEADING", "ICCT", "ICCT_METH", "KEY", "Test method/instrument type", "", "Gas Analyser", ""
"HEADING", "ICCT", "CNMT_TYPE", "KEY", "Determinand", "", "GMETH", ""
"HEADING", "ICCT", "CNMT TTYP", "KEY", "Test type", "", "GAS", ""
"HEADING", "ICCT", "ICCT RESL", "COMMON", "Test result", "", "54.76", ""
"HEADING", "DICT_PGRP", "COMMON", "Parent group name", "", "HOLE", ""
"**ABBR"
"*ABBR_HDNG","*ABBR_CODE","*ABBR_DESC"
"CNMT_TTYP","WATER","Water"
"CNMT_TTYP", "GAS", "Gas"
"FILE DOCT", "DRAW", "Drawing"
"FILE DOCT"."PH"."Photograph
"FILE_DOCT", "REP", "Report"
"GEOL LEG","101","Topsoil"
"GEOL_LEG","204","Gravelly CLAY"
"GEOL_LEG","220","Sandy gravelly CLAY"
"GEOL_LEG","504","Sandy GRAVEL"
"GEOL_GEOL","TS","Topsoil"
"GEOL GEOL", "WBC", "Weathered Boulder Clay"
"GEOL GEOL". "BC". "Boulder Clav"
```


"GEOL_GEOL","GG","Glacial Gravels" "GEOL GEO2", "CLAY", "Clay" "GEOL GEO2", "GRAVEL", "Gravel" "HOLE_TYPE","CP","Cable percussion (shell and auger)" "HOLE_TYPE","IP","Inspection pit" "HOLE_TYPE","TP","Trial pit/trench" "ISPT TYPE", "C", "Cone" "ISPT_TYPE", "S", "Split spoon" "MONP_TYPE", "SP", "Standpipe" "MONP_TYPE", "GMP", "Gas monitoring point" "SAMP TYPE", "B", "Bulk disturbed sample" "SAMP_TYPE","D","Small disturbed sample" "SAMP_TYPE","U","Undisturbed sample - open drive" "SAMP TYPE","W","Water sample" "**CODE" "*CODE_CODE","*CODE_DESC" "PHS","pH" "SO3", "Sulphate as SO3" "CL","Chloride" "GOX", "Oxygen" "GCARD","Carbon dioxide" "**UNIT" "*UNIT_UNIT","*UNIT_DESC" "m","metre" "dd/mm/yyyy","day month year" "hhmm", "hours minutes" "hhmmss", "hours minutes seconds" "%", "percentage" "g/l", "grams per litre" "mg/l", "milligrams per litre" "%vol","percentage volume"

APPENDIX 3

Security of Media

Media Labelling

Media Index Record

SECURITY OF MEDIA, MEDIA LABELLING, MEDIA INDEX RECORD

Backup copies of media

The Producer will make two identical copies of each media disk containing AGS Format data.

The first copy will remain the property of the Producer and will be kept by him until the expiry of the contract maintenance period.

The second copy will be given to the Receiver who will be responsible for its long term retention. The Receiver will make a backup copy of the disk for security purposes immediately on receipt.

Media labelling

All media will be securely labelled and clearly marked with

The title 'AGS Format Data'
The project identification (PROJ_ID)
The date of issue to the Receiver
The name of the Producer
The name of the Receiver
The AGS Edition number
The unique issue sequence number

Media index record

The Producer will maintain an index detailing for each issue of data.

The heading 'AGS Format Data'
The title 'Media Index Record'
The project identification (PROJ_ID)
The unique issue sequence number
The date of issue to the Receiver
The name of the Producer
The AGS Edition number

The name of the Receivers representative to whom the media was given

A general description of the data transferred and/or a file listing for associated files

In addition the index will detail for each AGS Format data set, including all associated files.

The file name including the extension The date of file creation

The time of file creation

The file size in bytes

A general description of the data contained in each file and/or a file listing for associated files

An index sheet should be prepared each time a data set is issued. The Producer should retain one copy of the index sheet and give a copy to the Receiver when the data set is handed over. An example of the form of index to be adopted is included.

The data files shall be checked for viruses before issue.

Where data is transferred via email or similar the media labelling shall be provided in a covering message. Provision is also made for these details to also be included in the PROJ group of the data submission.

AGS Format ASCII Data Media Index Record

Project Identification	
Client	
From	

Issue Sequence Number	AGS Edition Number	Issued To & Da	ate of Issue	General Notes
File Name	Creation Date	Creation Time	File Size in Bytes	General Description of data transferred
1				

- This sheet may be copied.
 File name, creation date, creation time and file size information may be provided as an attached directory file listing.

APPENDIX 4

Examples of General and Particular Specification Clauses with Associated Notes for Guidance

Introduction

In order to assist in the drafting of ground investigation specifications, examples of the type of clauses and associated notes for guidance for implementing digital data are given in this Appendix. Not all of these clauses are likely to be required in all contracts but the intention is to provide the appropriate clauses for most scales of ground investigation.

General

- 1 Unless otherwise required in the Contract, the Contractor is to provide field and laboratory data in digital form, as well as in paper form.
- 2 The definitive copy of the field and laboratory data shall be the paper copy.

Format

- The format of the digital data files shall comply with the Association of Geotechnical and Geoenvironmental Specialists (AGS) publication `Electronic transfer of geotechnical and geoenvironmental data' Edition 3.1.
- 4 Any new groups or fields shall only be created with the Engineer's approval.

Security

5 All disks, or other agreed transmission media, shall be securely labelled and clearly marked with:

The title `AGS Format Data'
The project identification (PROJ_ID)
The date of issue to the Engineer
The name of the Contractor
The name of the Engineer
The unique issue sequence number

If more than one disk, or other agreed transmission medium, is required, then each shall be clearly labelled to indicate the order in which the Engineer should read the data. The split of the data into separate files shall be decided by the Contractor. The unique sequence number shall run sequentially from the start of the contract. Where more than one disk is required for a particular issue of digital data, this fact shall be clearly identified on the labels in that issue.

6 Until the completion of the maintenance period, the Contractor shall keep an index detailing:

The heading `AGS Format Data' The title `Media Index Record'

The project identification (PROJ ID)

The unique issue sequence number

The date of Issue to the Engineer

The name of the Contractor issuing the transmission media

The name of the Engineer to whom the transmission media was issued

A general description of the data transferred and/or a file listing for associated files.

For each AGS Format data set, including all associated files, the index will detail:

The file name including the extension

The date the file was created

The time the file was created

The file size in bytes

A general description of the data contained in each file and/or a file listing for associated files.

The Contractor shall retain one copy of the index sheet and shall issue to the Engineer a copy of the completed index sheet with the disk(s), or other agreed transmission medium.

7 All data files shall be checked for viruses before issue using a recent proprietary anti-virus program.

Preliminary Data

- 8 The Contractor shall issue digital copies of all preliminary data whenever required by the Engineer.
- **9** The preliminary data may be subject to update as necessary in the light of laboratory testing and the further examination of samples and cores. When available, laboratory data shall be input.
- In addition to the labelling given in Clause 5, the disks shall be labelled `PRELIM' and a unique sequence number given to the disk for each issue of digital data to the Engineer.
- A list of data items not included in the digital data but included in the paper copy shall be provided.
- All preliminary data in digital form shall be able to be presented in the same form as it is to be used for the Factual Report. The digital data must be produced from the same source/program as that used to produce the factual report.

Factual Report

- In addition to the labelling given in Clause 5 of this specification, the disk(s), or other agreed transmission media, submitted with the Factual Report shall be labelled `FINAL'.
- 14 The digital data provided by the Contractor with the Factual Report is required to be complete and a total replacement of any previous preliminary data.
- In addition to the paper copies of the Factual Report, the Contractor shall provide a Report with a digital copy of those field and laboratory data and associated files specified in the Contract to be in digital form. This report shall consist of a disk(s), or other agreed transmission medium, containing the digital data and associated files, paper copies of any data or drawings not included in digital form. The file format for associated files shall be agreed in advance between the Contractor and the Engineer. The paper copies shall be firmly bound within stiff covers.

Dummy Set of Data

Prior to the start of work on the Contract the Contractor shall submit to the Engineer a dummy set of data in the required format for the approval of the Engineer.

Submitting Data

17 Updated disks, or other agreed media, shall be provided as required by the Engineer as work proceeds. The Contractor shall make two identical copies of each disk, whether preliminary or final. The first copy shall be retained by the Contractor until the expiry of the contract maintenance period. The second copy will be issued to the Engineer.

Units of Measurement

The preferred units of measurement shall be those given in the AGS publication `Electronic transfer of geotechnical and geoenvironmental data' unless other units of measurement for digital data are given in the Contract. The units of measurement must be given in the AGS Format files, and must be the same as those used in the paper version of the report.

Notes for guidance on the use of the specification for digital data

The numbering of these notes corresponds to the relevant clause number of the specification for digital data.

General

NG 1 A copy of the digital data may in some circumstances accompany every issue of the paper copies and the data shall be subject to the same timing and submission requirements. However, the Engineer may, depending on the contract, prefer to receive digital data only after a significant amount of data has been collected.

NG 2 The paper copy is definitive.

Format

- NG 3 The acceptable media for the transmission of data should be given on a site specific basis. The data dictionary defining the data groups and headings is given in the AGS publication `Electronic transfer of geotechnical and geoenvironmental data'.
- NG 4 The Engineer is responsible for contacting the AGS to ensure that any digital data proposed to be used, and which are not included in the AGS publication mentioned in NG 3, have not already been assigned a heading. By following this procedure, new standard headings can be issued.

Security

- NG 5 It is critical that disks, or other agreed transmission media, are properly labelled to ensure easy identification.
- NG 6 The index is also critical to the proper management of disks, or other agreed transmission media. The AGS publication mentioned in NG 3 gives an example of the form of index which can be adopted.
- NG 7 The virus scanning software shall be capable of scanning the included associated files, for example for macro viruses.

Preliminary Data

- NG 8 Only the preliminary data or Factual Report may be required in digital form for some contracts. The timing of submission of the digital data may also require specifying.
- NG 9 The Engineer and the Contractor must be aware of the problems posed by the presence of small sets of data in a series of files and the potential for, and the presence of, errors in the data sets. These become very important if the data is being transferred to a database where incoming data is added to existing data. The organisation of the data prior to issue is the responsibility of the Contractor. The Contractor's system must ensure that data originating from different sources within the Contractor's organisation is compatible.
- NG 10 The sequential numbering of data issues must be rigorously adhered to so that no data versions are issued out of sequence. When errors or inconsistencies are noted in the data, by either the Engineer or Contractor, they should be corrected by the Contractor and a corrected data set issued. When a change or addition is made to data within an issue, a complete data group should be reissued, not just the changed fields. This may not require complete replacement of the whole data set which includes other previous issues.
- NG 11 The requirement for identification of data items, which are not included in the preliminary data set ensures that no information is left out when each digital data record is issued.

Factual Report

NG 15 The requirements given for the Report containing the digital data are to ensure that the bound volume is as complete as the full paper copy. The requirement for data items, which are not included in the digital data, to be given ensures that no information is left out when the digital data is issued.

Dummy Set of Data

NG 16 This requirement ensures that the Contractor is using the standard headings and that the digital data can be accurately transferred.

Submitting Data

NG 17 The second copy will be given to the Engineer who should, immediately on receipt, make a backup copy for security purposes.

The Engineer is likely to be receiving information from a number of sources within the Contractor's organisation, e.g. field data and laboratory data. The Contractor's data management system must ensure that all issues are compatible and numbered in the correct sequential order. The Engineer must be prepared to manage the data as it arrives. Any file transmitted during the Contract may contain all or part of the data available at that time. It may contain borehole log data, laboratory data or both.

Units of Measurement

NG 18 It is necessary for the Engineer to be certain exactly what the units of measurement are for the data being received. It is recognised that units may be specified elsewhere in the contract. All units must be specified for the digital data in order to ensure an understanding of transferred data.

APPENDIX 5 AGS Format User Support

1 Introduction

The AGS web site is designed to support users of the AGS Format. It contains the latest publication in Acrobat PDF together with the data dictionary and latest 'pick' list codes in CSV format. The site also contains a discussion board where users can discuss questions with the AGS Format committee members and other users. The web site address is http://www.ags.org.uk.

2 Web Site Format Login

Before you can download the AGS publication or submit questions to the discussion board you must request a login name to access the restricted areas of the web site. Site logins are free of charge and can be requested on line in 5 to 10 minutes. When the on site form is completed you will be emailed an activation code for your account and instructions on how to log on.

3 Discussion board

The discussion board is an area of the web site that has been designed for the support of AGS Format users. If you are in any doubt on the use of a particular aspect of the Format then you are advised to consult the discussion board for questions and discussions on the particular subject.

If you are unable to find the information you require on a current discussion thread then you can place a new question on the discussion board. The discussion board is monitored by the AGS and you should receive an answer to your questions within a couple of days.

Full instructions on how to use the discussion board are available on the web site.

4 'Pick' List Codes

The latest version of the 'pick' list codes can be viewed and downloaded from the web site. Users should check this list before defining a non-standard 'pick' list code. If the required 'pick' list item is not on the web site list then you may submit it to the on-line suggestion box. All suggestions will be considered and commented on by the AGS Format Working Party. Appropriate codes will be added to the web site list and an update notification emailed to all registered users of the AGS Format.

5 Downloading This Publication

Registered users of the AGS Web site can download this document in PDF file format free of charge. The document is distributed as shareware and can be read without charge.

6 AGS Format Registration

If your company uses the AGS Format to transmit data electronically we request that you register your use of the AGS Format for a small fee. A list of registered companies is available on the web site. Registration forms and information on current charges can be downloaded from the web site.

If you receive AGS Format data we ask you to ensure that your data producer is registered to use the AGS Format.

7 Update Notification

Registered users of the Format will receive AGS Format news and updates by email.

8 Registration Benefits

Registered users of the format will also;

Be sent the current 'pick' lists and data dictionary in CSV file format Be able to use the AGS Data Logo on their reports Be able to download the example AGS file from the web site Be included on the list of registered users Make suggestions for future additions of the AGS Format

9 Suggestions for Future Additions

Registered users of the format will be able to suggest additions to the format's data dictionary via an on-line suggestion box. All suggestions will be considered and commented on by the AGS committee and all appropriate suggestions will be included in the next release of the format.

APPENDIX 6

Suggested Usage of the AGS Format

Introduction

This Appendix is intended to help both new and experienced users of the AGS Format. It presents some general issues; provides guidance on avoiding common problems; explains how to use the Format to report less frequently used data and introduces features that are new to Version 3.

If you have a specific problem in using the AGS Format which is not addressed in this Appendix, then refer to the Discussion Forum on the AGS web site (see Appendix 5) to see if your query has already been answered, or ask a question of the AGS Format committee.

Key to symbols

The indicated text provides general information that is relevant to users of the AGS Format.

The indicated text describes an AGS recommended procedure.

The indicated text describes a typical usage of the AGS Format. The AGS would welcome suggestions from users of other ways that this aspect of the AGS Format can be carried out. Suggestions should be made in the Discussion Forum on the AGS web site.

This page is left intentionally blank

Contents

- 1 Data format, data integrity and data correctness checks
- 2 <u>Using a spreadsheet to create or edit AGS Format data</u>
- 3 Using a relational database to create or edit AGS Format data
- 4 Backward and forward compatibility
- 5 The use of linked pairs of Groups
- 6 Reporting test units
- 7 Standard abbreviation 'pick' lists and user defined abbreviations
- 8 Geology and Legend Codes
- 9 Associated files
- 10 Geophysical data
- 11 <u>Amalgamated samples</u>
- 12 The use of DREM and DETL
- 13 Reporting trial pits
- 14 Reporting SPT tests
- 15 Reporting chemical test results
- 16 Reporting linear traverse, scanline or slope strip logs
- 17 Reporting discontinuity logging data
- 18 Reporting in situ tests not carried out in a borehole or trial pit
- 19 Transfer of monitoring data
- 20 Reference points, monitoring points and key fields
- 21 <u>Instrument orientations and sign conventions</u>
- 22 ?MONP and ?MONR Examples
- 23 <u>In situ gas and geochemical monitoring</u>
- 24 <u>Time related remarks</u>
- 25 User defined Headings and Groups
- 26 Text formatting, fonts and special characters
- 27 Declaration of AGS Format data files

This page is left intentionally blank

1 Data format, data integrity and data correctness checks

The AGS Format is designed for the transfer of geotechnical data between a Provider and a Receiver. The data will be produced by a software program and received into another program. It is tempting for both the Provider and Receiver to assume that because the data has been output from a computer program it must be correct. This is a dangerous assumption. The onus is on the Provider to produce correct data, but the Receiver should also satisfy himself that it is correct, before using it. There is a series of checks that both Provider and Receiver should carry out on each data set issued or received.

a) Data format checks

Does the data format comply 100% with the format defined by the AGS Rules set out in this document?

- i) The best way to check the data format is to use one of the commercially available AGS data format checking programs. The available programs are listed on the software page of the AGS web site at http://www.ags.org.uk. A data format checking program should allow you to check the following:
 - Is the PROJ Group present in the data file.
 - Is the total line length correct.
 - Are <CONT> continuation lines handled correctly.
 - Are there missing or extra commas or quotation marks.
 - Are the Group and Heading names correct.
 - Is the <UNITS> line present.
 - The program may also check other aspects of the data format.
 - The program will not be able to check that the columns of data line up correctly under the correct Heading or Units, so the file should be imported into a spreadsheet to check this (see (ii) below).
- ii) If an AGS Format checking program is not available then a partial check may be carried out by importing each data file into a spreadsheet.
 - Import the AGS File into the spreadsheet using the Comma Separated Value (CSV) import filter.
 - If the Headings continue onto a second line, they will not line up over the correct column. Cut and paste them to the correct columns.
 - If the Units continue onto a second line they will not line up over the correct column. Cut and paste them to the correct columns.
 - Check that all the columns of data line up correctly under the correct column Heading, if not, there are some missing commas or other problems in the data set.
 - Check that the Units are appropriate for the Heading that they are under. If not there may be some missing commas or the wrong Units may have been given.
 - Make sure that no quotation marks appear in the data. If they do this will often highlight mismatched quotation marks.
 - Check that the <CONT> continuation lines follow on correctly. Look particularly at long stratum descriptions in the GEOL Group.
 - Beware, if you are subsequently going to import the AGS file into a specialist program that
 expects strict AGS Format files, then do not edit or save the AGS file from your spreadsheet if it
 does not produce strict AGS Format CSV files (see Section 2 below).

- iii) The data files can be imported into a word processor or text editor and checked by eye.
 - Switch off word wrapping, or set the line length to greater than 240 characters. Use a non-proportional font.
 - Checking by eye is extremely tedious and it is not easy to spot formatting errors. However, it is sometimes necessary to resort to this, when methods (i) and (ii) fail to show up format problems which may prevent the data from being read correctly.

b) Data integrity checks

The AGS Format defines a hierarchy of the data Groups, with the HOLE Group at the top and all the other data Groups below this in an inverted tree-like structure. Each Group is linked to the one above it and the one(s) below it by Key Fields. For this structure to work correctly the data in the Key Fields must be consistent. If the Key Field data is not consistent, or is missing, then the integrity of the data set breaks down and data may be 'lost' or unrecognisable to the Receiver's software.

- i) Data integrity checks could be carried out by eye on a small data set.
 - Import each group into a spreadsheet. If the Headings or Units continue onto a second line cut and paste them to the correct columns and print it out.
 - Carry out the checks and cross-checks described below in (ii).
 - It is not practical to carry out this process by eye on a data set with anything more than a dozen
 or so holes.
- ii) For medium to large size data sets an integrity check can only be sensibly and rigorously carried out by one of the commercially available geotechnical relational database programs that has in-built data integrity checking procedures. The available programs are listed on the software page of the AGS web site at http://www.ags.org.uk. The program should check for the following integrity problems:
 - Each line of data in every Group must have a combination of data in the Key Fields that is not repeated in any other lines of data in that Group. This unique combination of Key Field data must exist wherever there is a related item in any Group lower down in the hierarchy. As one progresses down the hierarchy additional Key Fields are required to ensure this uniqueness at each level. This is illustrated in more detail below.
 - The borehole, trial pit and reference point numbers given in the HOLE Group must be unique. If there are two boreholes numbered BH1 in the data set, for example due to a re-drill at an adjacent location, then this is a data integrity error and must be changed. One of the boreholes must be re-numbered BH1A.
 - The borehole, trial pit and reference point numbers must be consistent throughout the data set. For example, borehole BH1A must always be written exactly in this way. Variants such as Borehole 1A, BH1a, BH1, BH-1A, BH1(A), BH 1A, 1A etc are not acceptable. The program will check every data Group below HOLE in the hierarchy and every line of data in every Group must have a borehole number which is in HOLE. If the borehole number is not in HOLE or is formatted differently from the version in HOLE or is missing then this is an integrity error and must be corrected.

 For every sample in the data set, and for every test on every sample, there must be a unique, unambiguous and consistent combination of borehole number, sample top depth, sample reference number and sample type. For example, the first four samples in the following table are uniquely defined, but the fifth sample is ambiguous, and does not satisfy data integrity, and must be corrected.

HOLE_ID	SAMP_TOP	SAMP_REF	SAMP_TYPE
BH1A	9.50	10	D
BH1A	10.00	10	D
BH1A	10.00	11	D
BH1A	10.00	11	W
BH1A	10.00	11	

It is good practice to give a sample top depth, sample reference number and sample type to every sample. It is also preferable to have unique sample reference numbers in each borehole as this then provides a cross check against sample labelling errors. Data integrity can also be obtained where every sample is given a unique reference number.

- The combination of HOLE_ID, SAMP_TOP, SAMP_REF and SAMP_TYPE given in the SAMP Group for a sample, must be repeated exactly in all the Groups below SAMP in the hierarchy, for all tests on that sample. There must not be any laboratory test results in any Group that have a combination of HOLE_ID, SAMP_TOP, SAMP_REF and SAMP_TYPE that does not appear in the SAMP Group.
- The SPEC_REF and SPEC_DPTH fields in all the laboratory testing Groups below SAMP in the
 hierarchy are intended to be used when two or more sub-samples are taken from a sample, and
 tested independently. If this is done, then each sub-sample tested must have a unique
 combination of SPEC_REF and SPEC_DPTH, and this combination must be identical for all
 tests carried out on that sub-sample.
- If the same test type is repeated on the same sample more than once, then each test result must be given a different SPEC_REF.
- If a sample has only one specimen prepared from it, and one test of a given type carried out, then the SPEC_REF and SPEC_DPTH fields may be left blank (ie. a null "" character should be placed in them).
- All the Groups that relate to in situ testing and monitoring have either a depth or date plus time Key Fields. The combination of HOLE_ID and the depth or date plus time must be unique for each test result.
- Laboratory and in situ testing Groups that are linked in pairs of a General Group and a Detail Group (see Section 5 below) have a point number, stage number or increment number in the Detail Group, and this must be unique for each point, stage or increment of the test.
- For every monitoring point in the data set, and for every reading on every monitoring point, there must be a unique, unambiguous and consistent combination of reference point ID and distance from the monitoring point to the reference point. For example, the first four monitoring points in the following table are uniquely defined, but the fifth sample is ambiguous, and does not satisfy data integrity, and must be corrected. ?MONP_DIS must always be given. If the monitoring point is at the reference point, then ?MONP_DIS is zero and must be given as 0 to avoid ambiguity.

?HOLE_ID	?MONP_DIS	?MONP_ID
H1A	0	
H1A	10.00	Тор
H1A	10.01	
H1A	10.02	
H1A		
H1A	10.00	Side

- If there are two of more monitoring points at the same distance from the reference point, and it is not possible to make the combination of ?HOLE_ID and ?MONP_DIS unique, then a ?MONP_ID must be added (as in the example above) to make the combination of ?HOLE_ID, ?MONP_DIS and ?MONP_ID unique.
- For all readings given in ?MONR and ?ICCT a date and time must be given. The combination of ?HOLE_ID, ?MONP_DIS, ?MONP_ID, ?MONR_DATE and ?MONR_TIME given in ?MONR must be unique for every reading. Similarly, the combination of ?HOLE_ID, ?MONP_DIS, ??MONP_ID, ?ICCT_DATE and ?ICCT_TIME given in ?ICCT must be unique for every result.
- iii) The golden rules for data integrity are:
 - Within each Group the Key Fields must contain sufficient information that uniquely identifies that item of data within that Group. There must be no duplicates and no ambiguities.
 - The data in the Key Fields must be identical in the Groups both above and below each Group in the hierarchy, to ensure that the data can be linked together correctly.
 - As you move down the hierarchy of Groups to increasing levels of detail, more Key Fields are needed at each level to ensure that the data is uniquely identified.

c) Data correctness checks

Perhaps the most difficult check to carry out is to determine if the data given in the AGS file is correct. This check can only be automated to a certain degree, and relies largely on careful checking by eye, and on the experience of the checker to spot rogue results. The following checks should be carried out. Some of these checks apply only to the AGS data set, but others are of a more general nature, and apply equally to the paper version of the report.

i) AGS Format checks

- Is the data set complete? Have all the investigations and tests carried out been fully reported.
- Does the data given in the AGS file agree 100% with the data given in the paper report?
- Are the <UNITS> correct? The data Provider's software may add the <UNITS> fields automatically, without the intervention of the person who has typed in the data, and errors can result.
- Are the <UNITS> the same as the preferred units given in this document? Different units may be used, but the Receiver should ensure that the receiving software correctly identifies the units.
- ii) General checks on the AGS file and the paper report
 - Is the data factually correct? Are there any systematic errors that effect all the results of a particular test type, and are there any rogue results that effect just a few of the results? These problems are often only spotted once someone starts to use the results, and analyse them in detail. It is prudent to do some quick depth plots of data during the checking process to look for rogue or anomalous results. Some of the geotechnical database programs allow the user to set minimum and maximum values for each test result, and any values falling outside this range are flagged as anomalous.
 - · Have the calculations of test results been carried out correctly.
 - Have the interpretations within the 'factual' data been carried out correctly. Such as, have the correct geological stratum names been assigned to each stratum.

2 Using a spreadsheet to create or edit AGS Format data

a) Data integrity problems

The AGS Format has been designed so that it can be created and viewed in a spreadsheet. This can work quite satisfactorily for small investigations where it is practical to carryout the checks described in Section 1 above by eye. However, with medium to large investigations it is impractical to carry out these checks with sufficient rigor and in particular, experience has shown that it becomes impossible to maintain data integrity within a large data set. Inconsistent borehole and sample numbering becomes almost inevitable when many spreadsheets are created by a number of different people.

b) CSV file format problems

When the AGS Format was first conceived in 1992, most of the spreadsheet programs on the market were able to output files in CSV (Comma Separated Value) format, with each variable on a line separated from the next by a comma. If all the values (text, number or date) were forced to be in text format they would each be surrounded by inverted commas. This became the basis of the AGS Format. However, with the march of software progress, spreadsheet programs have become more "intelligent", and a number of the current spreadsheets output CSV format files that only put inverted commas around text fields that contain commas in the text. All other text, number or date fields are not surrounded by inverted commas. If a text field includes an inverted comma in the text, the inverted comma may be bracketed by two inverted commas. Any of these variants of the CSV format would not satisfy the AGS Format Rules. Also, leading or trailing zeros may be truncated from numbers, and the date format may be altered. As a result of these inconsistencies, spreadsheet generated or edited CSV files may not be handled correctly by programs designed to receive strict AGS Format files.

To check whether your spreadsheet is capable of producing AGS Format data files run the following test:

- Open a new blank spreadsheet. Select the whole spreadsheet, and set all the cells to text format.
- Type in the following three lines of data:

а	b	С	d
1	2.00	0.03	
	a,a	b"b	01/11/1999

- Save the spreadsheet in CSV format.
- Open the CSV file in a text editor, such as Notepad, using a non-proportional font, with all formatting and word-wrapping switched off. You should see the following file:

```
"a","b","c","d"
"1","2.00","0.03",""
"","a,a","b"b","01/11/1999"
```

• If you see anything else, your spreadsheet has failed the test.

Excel95, Excel97 and Excel XP fail this test and can not be used by themselves to create or edit AGS Format files. However, Excel add-ins are available that overcome this problem and are referenced on the software page of the AGS web site at http://www.ags.org.uk.

3 Using a relational database to create or edit AGS Format data

For medium to large projects it is essential to use a dedicated geotechnical relational database to generate the AGS data set to ensure data integrity. Such a program should be able to handle all the geotechnical data for a project, from borehole logs, in situ tests, monitoring test results to laboratory test results. The program should have 'persistent referential integrity' built in to it, which can not be overridden or circumvented and this will ensure that the borehole and sample numbers are consistent throughout the database. The available geotechnical relational database programs that utilise the AGS Format are referenced on the software page of the AGS web site at www.ags.org.uk

The golden rules for producing high quality, correct AGS Format data are:

- All the data is entered into one dedicated program which has in-built rules for enforcing data integrity.
- Each item of data is only entered once. For example, the sample details are only input when the borehole log is being typed in. When the laboratory test results are being input, the sample details are called up from the program and do not have to be entered again.
- All the pages for the paper report (the borehole logs, the laboratory test summary tables etc) are produced directly from the same database and by the same program at the same time as the AGS Format data files are produced.
- The program has some in-built procedures for checking for gross errors and rogue results.
- The checking of the data is thorough, is done on the paper version of the data and includes the plotting out of the data to spot rogue results.
- A person with appropriate experience who is able to spot rogue results, errors and inconsistencies should review the data.
- The AGS Format data files are run through a format-checking program before being issued.
- Use of a spreadsheet program alone cannot satisfy the above requirements. Only a dedicated geotechnical
 relational database program (or a spreadsheet with sophisticated macros that emulate the behaviour of a
 relational database) can be expected to produce high quality AGS Format data for medium to large size
 projects. However, a database program cannot perform miracles; it requires correct data to be input, by
 competent people, who carry out thorough checking before issuing any output.

4 Backward and forward compatibility

Software designed to read Version 3 of the AGS Format should also be able to read data in Version 2 of the AGS Format. Version 3 software may not be able to fully read data in Version 1 of the AGS Format, as there were some significant structural changes in the AGS Format between Versions 1 and 2. Software designed for Version 2 of the AGS Format will not be able to fully read a Version 3 data file.

A number of Group Headings in Version 3 of the AGS Format have been marked as "Deleted". These Headings should not be used, and have been retained solely to ensure backward compatibility with old data sets held in Version 2 of the AGS Format. Provision has been made in Version 3 for all "Deleted" Headings. They are either replaced by alternative Headings, or Headings in other existing Groups, or new Groups. Deleted Headings may be removed from future versions of the AGS Format and only referenced in a 'previous versions' section to provide information for those developing conversion routines.

The AGS Format will continue to develop in response to user's requirements. The AGS Format drafting committee intends to maintain backward compatibility to the immediately previous version, but can not guarantee full backward compatibility to earlier versions. Wherever possible the committee will give advance warning of significant format changes intended to be implemented in the next version. For example, in the current Version 3, it is announced that the CHEM and GAST Groups will be discontinued in the future Version 4, and that their use should be phased out, and replaced by the CNMT Group.

The availability of format conversion programs, to convert old data sets to the current version of the AGS Format, will be announced on the AGS web site at http://www.ags.org.uk.

5 The use of linked pairs of Groups

- a) The AGS Format uses pairs of Groups to report some test results where the test can be divided into general information, and detailed data. The paired Groups are:
 - CBRG and CBRT for CBR tests.
 - CMPG and CMPT for compaction tests.
 - · CONG and CONS for consolidation tests.
 - DPRG and DPRB for dynamic probe tests.
 - MCVG and MCVT for MCV tests.
 - PRTG and PRTL for pressuremeter tests.
 - SHBG and SHBT for shear box tests.
 - · TRIG and TRIX for triaxial tests.

For each of these pairs, the first Group of the pair, with the 'G' suffix, is used to present the general information for the test and the overall test results. The second Group of the pair is used to present the detailed data for each stage of the test. The second Group includes a Key Field for stage number (or increment or point or loop number or depth etc). The first Group will always only have one line of data for each test, whereas the second Group will have several lines of data for each test. When reporting the results of these tests it is normal practice to include both Groups in order to report the test fully. However, if the detailed data is not required or not available, then the general Group may be reported on its own by agreement between the Provider and the Receiver (except for DPRG which gives only the dynamic probe equipment and no results). The detailed Group must not be provided without the general Group.

These paired Groups are handled readily by dedicated geotechnical relational database programs. However, they are not easily created or viewed using spreadsheets. If spreadsheets are being used, then care must be taken to ensure data integrity and the correct splitting and merging of the data when creating and viewing the AGS Format files.

If user defined Headings are added to these paired Groups, you should ensure that the Heading is added to the correct Group.

- b) One exception to the paired Groups is the GRAD Group for particle size distribution analysis data. For this test the general information and detailed data have been combined into one group. If user defined Headings are added to this group for general items, such as percentage clay fraction, then this data must be repeated in the data set for every point on the grading curve. It is therefore, better practice to put such user defined general fields into another Group, for example into the CLSS Group.
- c) A similar paired Group approach is adopted for monitoring test results, where a general Group is used to report the monitoring installation information and a detailed Group is used to report the monitoring test results. The paired Groups of this type are:
 - HPGI and HPGO for horizontal profile gauge installations and readings.
 - INST and IOBS for single point instrumentation installations and readings.
 - PREF and POBS for piezometer installations and readings.
 - PROF and PROB for profiling instrument installations and readings.

The first Group of the pair will always have only one line of data for each instrument, whereas the second Group of the pair will have many lines of data for the readings taken in that instrument. It is usual practice to present both Groups of the pair. However, if the instrument has been installed but no readings are available, then only the first Group need be presented. The second Group for readings must not be presented without the corresponding first Group for installation details.

For all of these instruments it is possible to have more than one instrument in a borehole, therefore Key Fields are required in both Groups of the pair to indicate which instrument is being referred to. These Key Fields are:

- The instrument reference number for horizontal profile gauges.
- The instrument depth and reference number for single point instruments.
- The piezometer tip depth for piezometers.
- The instrument reference number for profiling instruments.

These Key Fields must be reported for all installations and all readings otherwise data integrity is not satisfied.

The individual readings are identified by reading date and time and these must be recorded and reported. In addition for profiling instruments and horizontal profile gauges, each reading requires a depth or distance to identify it.

6 Reporting test units

A <UNITS> line must be included in every data Group except ABBR, CODE, DICT and UNIT. If you are creating or viewing an AGS Format file in a spreadsheet this line of information will be visible below the column Headings and should be carefully checked. Further checks are also required for the CNMT Group which handles test units in a different way from all other Groups.

- a) All data Groups apart from CNMT and ?ICCT
 - Import the AGS file into a spreadsheet using the Comma Separated Value (CSV) import filter.
 - If the <UNITS> continues onto a second line, you must first cut and paste the second line into the correct columns.
 - Are the units lined up under the correct column Heading?
 - Are the units the same as defined in the AGS Format? This is desirable, but it is not essential. For
 example the testing may have been carried out overseas, or to a different standard method and
 therefore different units may have been used. The same units must be used as given in the paper
 version of the report.
 - Are the units correct for the data that is given beneath? Experience has shown that this is a common
 error.
 - The units given in the <UNITS> line must be defined in the UNIT Group. Standard units are given in the 'pick' list in Appendix 1. Where standard units are used the format must comply exactly with that given in the 'pick' list in Appendix 1.
 - If you are creating or viewing data in a dedicated geotechnical relational database program, the units embedded in the AGS data file may not be displayed by the program in all views of the data. The program may assume that the units stated in the AGS Format have been used and display these units, rather than those in the AGS file. Similarly, when creating an AGS format file, the program may automatically generate the <UNITS> information, assuming the AGS default values, irrespective of the units actually used. There is therefore potential for significant systematic errors, which will only be avoided by careful checking by the data Provider and Receiver.
 - Authors of dedicated geotechnical relational database programs should ensure that their software requires the data Provider to input the units, or confirm the default units, for each parameter. The program should also display the units as embedded in the received AGS file.

b) The CNMT and ?ICCT Groups

The procedure for checking the test units for chemical test results reported in the CNMT or ?ICCT Groups are different to that used for all other data Groups. The following points should be recognised:

- The <UNITS> line in the CNMT Group gives only the units of the SAMP_TOP and SPEC_DPTH fields (preferred units are "m"). The <UNITS> line in the ?ICCT Group gives only the units of the ?MONP_DIS, ?ICCT_DATE and ?ICCT_TIME fields (preferred units are "m", "dd/mm/yyyy" and "hhmmss" respectively).
- The <UNITS> line does not give the units of the test results and is left blank for CNMT_RESL or ?ICCT_RESL (ie a null "" is given). The units of the test results are given in the CNMT_UNIT or ?ICCT_UNIT field of the CNMT or ?ICCT Group for every test result. It is necessary to check the units for every test result, not just the <UNITS> line.

- The units used for a particular test should follow the appropriate testing standard that has been specified and should be agreed between the data Provider and Receiver. The AGS Format does not specify preferred units for the tests reported in the CNMT or ?ICCT Groups.
- The units used in the AGS Format submission should be the same as those used in the paper report.
- For each test type the same units should be used throughout an AGS Format submission. The units given in CNMT_UNIT or ?ICCT_UNIT for a given test type should not be different on different samples.
- If several partial data submissions are made, then the units for a given test type should remain the same.
- The units given in CNMT_UNIT or ?ICCT_UNIT must be defined in the UNIT Group. Standard units are given in the 'pick' list in Appendix 1. Where standard units are used the format must comply exactly with that given in the 'pick' list in Appendix 1.

c) The UNIT Group

All units used in an AGS Format submission must be defined in the UNIT Group; this includes standard units given in the 'pick' list in <u>Appendix 1</u>, and user defined units. The following guidelines should be followed for all units:

- Where standard units are used, the format must be exactly as given in the 'pick' list in Appendix 1. This is required so that computer software can be programmed to automatically recognise the units.
- User defined units must be composed of only standard ASCII characters. No non-ASCII or extended ASCII characters shall be used. For example, do not use the Greek mu symbol for 1/1000000, but instead use the abbreviation "u", e.g. ug/kg.
- Do not use any superscripted characters. For example do not use kN/m² but instead use kN/m2.
- The units are case sensitive, therefore ensure that you exactly match the case of the standard units and that you have the correct case for any user defined units. For example, the standard unit is kN/m2 and therefore KN/m2 or kn/m2 are not acceptable.
- Before creating new user defined units, consult the Discussion Forum of the AGS web site at http://www.ags.org.uk to see if anybody else has already suggested an appropriate style of presentation for the unit. If not, add details to the Discussion Forum of what you propose to do. The AGS Format committee will consider all suggestions posted in the Discussion Forum when preparing the next revision of the AGS Format. See Appendix 5 for further details.

7 Standard abbreviation 'pick' lists and user defined abbreviations

All abbreviations used within the AGS Format data files of a submission must be defined in the ABBR and CODE Groups, including the standard abbreviations given in the 'pick' lists in <u>Appendix 1</u>. Chemical test codes are defined in the CODE Group, and all other abbreviations are defined in the ABBR Group.

a) User defined abbreviations in the ABBR Group

The 'pick' lists in Appendix 1 define a set of standard abbreviations, and indicate which Headings they should be used in. The data Group definitions indicate the Headings for which 'pick' lists of abbreviations are available. Headings which are indicated to have 'pick' lists available can also contain text items which are not taken from the relevant 'pick' list. If an abbreviation is used, then it must come from the 'pick' list, or a user defined abbreviation must be created. If a standard abbreviation exists for an item, then the abbreviation should be used not a full text equivalent.

User defined abbreviations must be given in the ABBR Group and should follow these guidelines:

- User defined abbreviations should not duplicate an item for which a standard abbreviation is already given in the 'pick' lists.
- The abbreviation given in ABBR_CODE must not duplicate a code already given in the 'pick' lists for the same Heading. For example in the 'pick' lists "W" is given as an abbreviation for "Wash boring" in HOLE_TYPE and for "Water sample" in SAMP_TYPE. "W" must not be used as a user defined abbreviation in either of these Headings but could be used for other Headings, for example, as an abbreviation for "Well" in PREF_TYPE.
- ABBR_CODE should be considered as not case sensitive. Therefore "Cp" and "cp" are the same as
 the existing code "CP" and should not be used as a user defined abbreviation within HOLE_TYPE
 where "CP" is already defined in the 'pick' lists.
- ABBR_CODE should be restricted to the letters A to Z and the numbers 0 to 9 and should not contain spaces.
- The abbreviations should be agreed between the Provider and Receiver.
- All abbreviations must be defined in the ABBR Group including the standard abbreviations given in the 'pick' lists in <u>Appendix 1</u>, for example:

```
"**ABBR"

"*ABBR_HDNG", "*ABBR_CODE", "*ABBR_DESC"

"SAMP_TYPE", "M", "Mazier type sample"

"SAMP_TYPE", "VS", "Vial sample"

"SAMP_TYPE", "W", "Water sample"

"HOLE_TYPE", "OWCP", "Overwater cable percussion boring"

"MONP_TYPE", "TS", "Total station point"

"MONP_TYPE", "LC", "Load cell"
```

- Before creating new abbreviations, consult the Discussion Forum of the AGS web site at http://www.ags.org.uk to see if anybody else has already suggested an appropriate abbreviation. If not, add details to the Discussion Forum of what you propose to do. The AGS Format committee will consider all suggestions posted in the Discussion Forum when preparing the next revision of the AGS Format. See Appendix 5 for further details.
- b) User defined chemical codes in the CODE Group

User defined chemical codes must be given in the CODE Group and should follow these guidelines:

- User defined chemical codes must not duplicate a standard code which is already given in the 'pick' lists.
- CODE_CODE should be considered as not case sensitive. Therefore "Tol" and "tol" are the same as the existing code "TOL" and should not be used.
- CODE_CODE must be restricted to the letters A to Z and the numbers 0 to 9 and must not contain spaces.
- The codes should be agreed between the Provider and Receiver.
- All codes must be defined in the CODE Group including the standard codes given in <u>Appendix 1</u>, for example:

```
"**CODE"
"*CODE_CODE","*CODE_DESC"
"BIOXW","Biochemical oxygen demand"
```


Before creating new codes, consult the Discussion Forum of the AGS web site at www.ags.org.uk to see if anybody else has already suggested an appropriate code. If not, add details to the Discussion Forum of what you propose to do. The AGS Format committee will consider all suggestions posted in the Discussion Forum when preparing the next revision of the AGS Format. See Appendix 5 for further details.

8 Geology Codes

The code Headings within the GEOL Group may be used as follows, although alternative applications are possible.

a) The geology code GEOL_GEOL may be used as an abbreviation for the Geological Name of each geological unit, for example:

RA as an abbreviation for Recent Alluvium LC as an abbreviation for London Clay

User defined abbreviations or standard national abbreviations may be used. For example, in the United Kingdom the computer code given in the British Geological Survey lexicon of named rock units may be used (see the BGS web site at http://www.bgs.ac.uk).

b) The second geology code GEOL_GEO2 may be used as an abbreviation for the material type of each stratum, for example:

SC for Sandy CLAY C for CLAY

c) The stratum code GEOL_STAT may be used as the reference letter or number of each stratum on a trial pit log. Its sole purpose is to link the stratum shown on the face sketch of the trial pit to the stratum description given elsewhere on the log. It is therefore not used on borehole logs and it is not used on simple trial pit logs which are presented in borehole log format, without a face sketch. GEOL_STAT is usually just the numbers 1, 2, 3 etc or the letters A, B, C etc.

GEOL_STAT also appears in the SAMP Group and several of the in situ testing Groups so that it is possible to indicate which stratum on a trial pit face a sample was taken from, or an in situ test carried out in

- d) The way that GEOL_GEOL, GEOL_GEO2 and GEOL_STAT are used should be agreed between the Provider and the Receiver.
- e) All GEOL_GEOL and GEOL_GEO2 codes must be defined in the ABBR Group (see Section 7 above), for example:

```
"**ABBR"

"*ABBR_HDNG","*ABBR_CODE","*ABBR_DESC"

"GEOL_GEOL","RA","Recent Alluvium"

"GEOL_GEOL","LC","London Clay"

"GEOL_GEO2","SC","Sandy CLAY"

"GEOL_GEO2","C","CLAY"
```

9 Associated files

Data may be included in an AGS compatible submission for items that are not covered by the AGS Format by including the data in an associated file and referencing it in the AGS Format. The associated files may be in any file format that is acceptable to the Provider and Receiver. It is preferable that associated files are not compressed, however, large files that will not fit on to a single disk may be compressed using the ZIP file format. Zipped files must indicate the original file format plus the zipped file format. Compressed files should only be used in agreement between the Provider and Receiver. The AGS Format files in a submission should not be compressed.

All associated files must have an up to 8 character file name and a 3 character file type extension. Long file names must not be used.

The referencing procedure is in two parts:

- a) The associated data files are collected together into data sets. Each data set must have a unique reference number and this reference number is given in the FILE_FSET field of the relevant Group as follows:
 - General data files that refer to the whole site should be collected together in a file set that is referenced
 in the FILE_FSET field of the PROJ Group. Such data files may include the report text as a word
 processor file, the site plan as a CAD file, a set of general site photographs as JPG files or the
 investigation Bill of Quantities as a spreadsheet file. For example:

```
"**PROJ"

"*PROJ_ID","*PROJ_NAME","*PROJ_LOC","*PROJ_DATE","*PROJ_AGS","*FILE_FSET"

"<UNITS>","","","dd/mm/yyyy","",""

"7845","Trumpington Sewerage","Trumpington","28/05/1999","3","FS1"
```

Data files that refer to specific boreholes or trial pits should be collected together in a file set that is
referenced in the FILE_FSET field of the HOLE Group. Such data files may include a set of borehole
geophysics files in LAS format, the trial pit photographs as JPG files, or a detailed location plan as a
CAD file. It is recommended that core photograph files are collected together as part of the
FILE_FSET in the HOLE Group, rather than being placed in the CORE Group, as each core box
generally contains more than one core run.

```
"**HOLE"

"*HOLE_ID","*HOLE_TYPE","*HOLE_NATE","*HOLE_NATN","*HOLE_GL", "*FILE_FSET"

"<UNITS>","","m","m","m",""

"BH1","CP+RC","532154","176163","78.4","FS2"

"TP2","TP","532246","176047","64.9","FS3"

"H1","INST","532154","176163","78.4","FS2M"

"BH10","CP","532246","176047","64.9","FS3M"
```

 Data files that refer to specific samples should be collected together in a file set that is referenced in the FILE_FSET field of the SAMP Group. Such data files may include close up fabric photographs of a split piston sample as JPG files, or the text of a separate report on the petrographic analysis of an aggregate bulk sample as a word processor document.

```
"**SAMP"
"*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*FILE_FSET"
"<UNITS>", "m","",""
"BH1","2.50","5","P","FS205"
"TP2","3.50","3","B","FS314"
```

- Data files that refer to specific tests should be collected together in a file set that is referenced in the FILE_FSET field of the relevant test results Group. Such data may include close up photographs of a shear box sample after failure as a JPG file referenced in the SHBG Group, or a spreadsheet file of the detailed results and calculations of an in situ permeability test referenced in the IPRM Group. Where Groups occur as linked pairs (see Section 5) the file set should be referenced in the general Group of the pair.
- Data files that refer to specific monitoring points should be collected together in a file set that is referenced in the ?FILE_FSET field of ?MONP. Such data may include calibration files for the instrument or a detailed specification of the instrument type.
 "**?MONP"

```
"*?HOLE_ID","*?MONP_DIS","*?MONP_TYPE","*?FILE_FSET"
"<UNITS>."m","",""
"H1","0","TS","FS21M"
"BH10","12.50","SP","FS204M"
```


b) The contents of each file set are described in the FILE Group. The File Name within each File Set must be unique, so that the combination of the Key Fields of FILE_FSET and FILE_NAME is unique.

10 Geophysical data

The AGS Format does not cater for geophysical data (other than resistivity) as there are already well established international standards for the digital exchange of geophysical data.

- a) The most widely used standards are:
 - LAS (Log ASCII Standard). Originated by the Canadian Well Logging Society for the interchange of geophysical wireline logs in a simple ASCII format on floppy disc.
 - LIS (Log Information Standard) and DLIS (Digital Log Interchange Standard). LIS was originated by Schlumberger for the interchange of geophysical wireline logs. It has been largely superseded by DLIS developed by the American Petroleum Institute, but now maintained by the Petrotechnical Open Software Corporation. DLIS is also known as POSC RP66. These are more complete and complex formats than LAS, and were designed for magnetic tape use.
 - SEGY (Society of Exploration Geophysicists Y Format) for the exchange of seismic data. This is a tape based format.
 - Refer to the AGS web site at http://www.ags.org.uk for internet links to further information on these interchange formats. Of the above, LAS is the only one that is suitable for a submission on floppy disc, the others require magnetic tape.
- b) To include associated geophysical data files in any of the above formats in an AGS Format compatible submission:
 - For borehole wireline geophysical logs reference the data set of geophysical files under the FILE_FSET Heading of the relevant borehole in the HOLE Group. Detail all the files contained within the data set in the FILE Group (see Section 9 above).
 - For surface geophysical data sets (seismic, gravity etc) give a unique HOLE_ID in the HOLE Group for
 each data run, profile or point and then reference the data set of files under the FILE_FSET Heading of
 the HOLE Group. If the data set covers a linear run or profile then give the start and end co-ordinates
 of the line using the HOLE_NATE, HOLE_NATN, HOLE_ETRV and HOLE_NTRV Headings. The
 ground levels of the start and end of the line should be given using the HOLE_GL and HOLE_LTRV
 Headings. Detail all the files contained within the data set in the FILE Group (see Section 9 above).
 - For in situ resistivity profile data use the IRES Group of the AGS Format.

11 Amalgamated samples

It may be necessary to amalgamate two or more samples for laboratory testing. The samples may come from the same, or different, boreholes or trial pits. The procedure for reporting tests on these samples is given below:

- All the original samples (before amalgamation) must be detailed in the SAMP Group with their original borehole/trial pit numbers, depth, sample type and sample number.
- Then select one of the group of samples to be amalgamated as the "Primary sample" and put a duplicate entry for it into the SAMP Group, but change the sample type to AMAL. In the SAMP_REM field list all the samples that have been amalgamated to create this one combined sample. Include in the list the sample used as the "Primary sample". The format of the SAMP_REM list should be as follows:

```
HOLE_ID , SAMP_REF , SAMP_TYPE , SAMP_TOP units of SAMP_TOP + HOLE_ID , SAMP_REF , SAMP_TYPE , SAMP_TOP units of SAMP_TOP etc
```

For example:

```
"**SAMP"
"*HOLE_ID","*SAMP_TOP","*SAMP_REF","*SAMP_TYPE","*SAMP_REM"
"<UNITS>", "m","","",""
"TP1","2.50","1","B",""
"TP2","3.50","3","B",""
"TP2","4.50","5","B",""
"TP2","3.50","3","AMAL","TP1,1,B,2.50m+TP2,3,B,3.50m+TP2,5,B,4.50m"
```

- All amalgamated samples must be defined in SAMP before test results can be given elsewhere.
- In reporting test results on the amalgamated sample in other Groups, use the "Primary sample" details with the sample type as AMAL.

12 The use of DREM and DETL

The Groups DREM and DETL both include detailed information for inclusion on the borehole or trial pit log. Guidance on the use of these two Groups is given below, but alternative usages are possible.

- a) Group DETL may be used for adding geological details to the geological description of a stratum.
 - A geological description in DETL_DESC should be considered as a supplement to the main stratum description given in GEOL_DESC of the GEOL Group.
 - Detailed descriptions should be given a top and bottom depth if the feature has thickness. For example, "19.30 to 19.60m Sandstone boulder".
 - Detailed descriptions should be given a single depth (which is repeated in both the DETL_TOP and DETL_BASE fields), only if it has no significant thickness, or if it marks the top of a gradational change in the nature of the stratum. For example, "27.65m Marl parting" or "35.65m Becoming very sandy".
 - If the change in the stratum is not gradational it is generally preferable to give depth ranges. For example, "6.50 to 8.70m Sandy", is generally preferable to "Sandy below 6.50m".
 - The depth or depth range of the detailed feature may be repeated within the description if it is to be printed on the log.
 - Since the detailed descriptions are a supplement to the main description, detailed description depth ranges should not cross main stratum boundaries.

- b) Group DREM may be used for all remarks and notes that are related to a specific depth in the borehole or trial pit, that are not geological.
 - DREM is used for reporting incidents during drilling (such as "Fishing for broken U100 3.00 to 3.70m"), drilling records that don't readily fit in any other groups (such as "Pushing boulder ahead of casing 7.80 to 8.15m"), observations that are not strictly geological (such as "Strong petrol smell at 5.00m").

13 Reporting trial pits

Simple trial pits where the geology is treated as horizontal, continuous layers can be reported in a borehole type log, which is a one dimensional record of the ground conditions, the only dimension being depth. These logs readily convert into the AGS Format.

For more complex trial pits where the geology is not in horizontal, continuous layers, the log will normally include a (two dimensional) sketch of the faces to show the disposition of the strata, and the location of the samples and in situ tests. The stratum descriptions will be referenced to the sketch. Such trial pit logs require some compromises to convert them to a one dimensional borehole log in order to report them in the AGS Format. The following procedure may be used, but alternative methods are possible.

- On the face sketch give each stratum a stratum code number or letter. This is used to link the sketch to the stratum description, and is recorded as GEOL STAT.
- In your log production software produce a (one dimensional) borehole style log. The stratum code GEOL_STAT should be prominently displayed at the start of, or adjacent to, each stratum description. The strata should be presented in the same vertical sequence that they are seen in the trial pit faces. The stratum boundary depths on this log should be "approximate average depths" for each stratum boundary, as seen in the trial pit faces. This may be difficult to achieve where the strata boundaries are complex. However, every stratum must be included in the depth log, with some nominal thickness, and there must be no gaps in the log. Where strata are very limited in extent they could be included as a detail in the DETL Group, rather than as a separate stratum in the GEOL Group.
- Samples are recorded in the SAMP Group as normal, but also include the stratum code in GEOL_STAT of the SAMP Group to indicate which stratum the sample has been taken from. If you also wish to indicate which face of the trial pit the sample was taken from, then include this as a remark in SAMP_REM.
- In situ CBR, density, redox, resistivity and vane tests can be carried out in a trial pit, rather than at the ground surface. The tests should be recorded in the relevant Group as normal, but also include the stratum code in GEOL_STAT of the Group to indicate which stratum the test was carried out in. If required, the trial pit face number should be given in the REM field of the Group.
- If the face sketch has been produced on computer software, then this could be included in the AGS file as an associated file (see Section 9 above), and referenced in the FILE_FSET field of the HOLE Group for the trial pit.

14 Reporting SPT tests

The following guidelines may be applied to the reporting of SPT tests in the ISPT Group, but alternative usages are possible.

- When full test penetration of 450mm has been achieved the N value should be reported in the ISPT_NVAL field as a number. That is, report 35, do not report N=35.
- When full test penetration has not been achieved, then leave the ISPT_NVAL field empty.
- In the ISPT_REP field put the test result as reported on the paper borehole log. This may be in a format specific to the Provider. For example, an N Value of 35 may be reported on the log as: 35, N=35, [35] or 3,5/9,7,9,10=35 etc. An incomplete test may be reported on the log as: 50/160mm, 50/160, (50) or 8,10/15,12,23 for 10mm etc.

- The ISPT_INC1, ISPT_INC2, ISPT_PEN1 and ISPT_PEN2 fields should only be used for reporting the seating drive. If the seating drive is terminated during the first increment (as BS1377 permits in certain circumstances), then ISPT_INC2 and ISPT_PEN2 are left blank. The first increment of the main test drive is always reported in ISPT_INC3 and ISPT_PEN3.
- In some countries the test procedure requires three increments of 150mm each, rather than six increments of 75mm each. If this procedure is adopted, then report the increments in ISPT_INC1, ISPT_INC3 and ISPT_INC5, and the corresponding ISPT_PEN fields.

15 Reporting chemical test results

Routine chemical testing for geotechnical purposes (in accordance with BS1377) and chemical tests carried out for geo-environmental purposes, to standards other than BS1377, are reported using the CNMT Group. The CNMT Group has a structure that is different from all the other Groups in the AGS Format. The reported tests are identified by a code which is defined in the 'pick' lists in <u>Appendix 1</u>. The codes used must be defined in the CODE Group, as described in Section 7 above, even if standard codes defined in <u>Appendix 1</u> are being used.

There has been a change in the way that the codes are used between Version 2 and Version 3 of the AGS Format. In Version 2 the codes were often a combination of determinand and test type; therefore, there were several different codes for sulphate tests carried out on soil or water samples, and by different test methods. In Version 3 the codes used in CNMT_TYPE and defined in CODE_CODE solely indicate the determinand. In addition to the CNMT_TYPE code, a test type code must be used in CNMT_TTYP and defined in ABBR_CODE, which distinguishes between the different types of sulphate test. CNMT_TYPE and CNMT_TTYP are both KEY fields and must be included for every test result. Further information may optionally be given on the test method and sample preparation method in CNMT_METH and CNMT_PREP. Examples of the use of these four fields are given below:

	Version 2 equivalent			
CNMT_TYPE	CNMT_TTYP	CNMT_METH	CNMT_PREP	CNMT_TYPE
SO3	WATER		Filtered	SULAW
SO3	SOLID_21WAT	2:1 soil/water extract	Air dried	SULWS
SO3	SOLID_TOT	BS1377 Acid extract	Oven dried	SULTS

The results of the chemical tests are given in the CNMT_RESL field, and the units of each result must be stated in the CNMT_UNIT field. The abbreviations for the units must be defined in the UNIT Group (see Section 6 above).

The AGS wishes to promote the wider adoption of CAS numbers (Chemical Abstracts Service registry numbers), which uniquely identify many chemical compounds. The separation of determinand code and test type code in Version 3 of the AGS Format is compatible with the approach of the CAS number system. However, CAS numbers are not available for all the determinands listed in Appendix 1, and therefore CAS numbers may be used to supplement the CNMT_TYPE codes, but not replace them. CAS numbers may be included in the CNMT_CAS field. References to further information on CAS numbers are given on the AGS web site at http://www.ags.org.uk.

AGS

16 Reporting linear traverse, scanline or slope strip logs

The AGS Format can handle the reporting of logs of linear traverses (eg of a quarry face or foundation excavation), or scanline logs (eg for a detailed rock discontinuity survey) or a slope strip log (where the surface protection is stripped off a cutting face to log the underlying geology). Geological logging, discontinuity logging, sampling and in situ testing can all be included using the following guidelines.

a) The location and orientation of the traverse is recorded in the HOLE Group. The traverse should be given a unique reference number in HOLE_ID. The HOLE_TYPE is TRAV (for a traverse or scanline) or CH (for a surface slope protection strip). The co-ordinates of the start of the traverse are given in HOLE_NATE, HOLE_NATN and the co-ordinates for the end are given in HOLE_ETRV and HOLE_NTRV. The level of the start of the traverse is given in HOLE_GL and the level of the end is given in HOLE_LTRV. The

- compass bearing of the traverse is given in HOLE_ORNT and the inclination of the traverse line from the horizontal is given in HOLE_INCL (eg 0 deg for a horizontal scanline, or 90 deg for a vertical slope strip).
- b) Strata boundaries, weathering divisions, discontinuities, samples and in situ test locations are measured along the length of the traverse from the start for a subhorizontal traverse and down the traverse from the top for a subvertical traverse. These measurements are then entered as depths in the appropriate AGS fields (eg GEOL_TOP, GEOL_BASE, WETH_TOP, WETH_BASE, DISC_TOP, DISC_BASE, SAMP_TOP, IVAN_DPTH etc).

17 Reporting discontinuity logging data

Discontinuity logging may be carried out as part of a scanline survey of a rock face, or as a detailed fracture log of borehole core.

- a) The logging may take one of three forms, the first two being the commonest:
 - The recording of the nature of individual discontinuities. All discontinuity descriptions are given in the DISC Group. The FRAC Group is not used. The spacing between individual discontinuities may be assessed from their depths.
 - The recording of the typical nature of sets of discontinuities. The typical description for a discontinuity set is given in the DISC Group and the typical spacing is given in the FRAC Group. Individual discontinuities are not described.
 - The recording of the nature of individual discontinuities, with each discontinuity assigned to a discontinuity set. The individual discontinuity descriptions are given in the DISC Group and the typical spacing of a discontinuity set is given in the FRAC Group.
- b) If individual discontinuities have been logged along a scanline or in a borehole, then the reporting procedure is as follows:
 - The nature of the individual discontinuities is recorded in the DISC Group.
 - The location of each discontinuity is given in DISC_TOP, either as depth in a borehole, or as distance from the start of the traverse along a scanline. The DISC_BASE field is left empty.
 - Each discontinuity is numbered sequentially in DISC_NUMB from the top of the borehole, or from the start of the traverse.
 - If each discontinuity has been assigned to a discontinuity set, then the set reference number should be given in FRAC_SET (see Section 17c below). The use of FRAC_SET is optional when individual discontinuities are logged.
 - The orientation and nature of each discontinuity is reported using the remaining fields in DISC. The
 descriptive scheme is derived from the ISRM (1978) Suggested methods for the quantitative
 description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining
 Science. Volume 15. No 6 pp 319-368.
 - For borehole logs the surface nature of the discontinuity is described using a combination of DISC_RGH, DISC_PLAN, DISC_JRC, DISC_APP, DISC_STR and DISC_WETH. It is generally not reliable to measure the aperture of a discontinuity in borehole core as the effect of drilling disturbance is unknown. However, the thickness of any discontinuity infill should be given in DISC_APT, and the nature of the infill given in DISC_INFM. Discontinuity dip can be given in DISC_DIP for vertical boreholes, and inclined boreholes with orientated core. Discontinuity dip direction can only be given in DISC_DIR if the core is orientated. In an inclined borehole with unorientated core only relative discontinuity dip can be given with respect to the core axis.
 - For scanline logs all the above details of discontinuity orientation and nature can be given, together with the large scale waviness, true discontinuity aperture, discontinuity termination (using the terms given in the 'pick' list in Appendix 1), and water seepage observations.
 - The format of the DISC Group is applicable to most descriptive schemes, other than ISRM (1978). Alternative schemes may be used on agreement between the Provider and Receiver.

- c) If sets or zones of discontinuities have been logged along a scanline or in a borehole, then the reporting procedure is as follows:
 - The discontinuity sets or zones are recorded in a combination of the DISC and FRAC Groups. The
 DISC Group is used to record either the typical orientation and nature of each set or zone of
 discontinuities, or the individual discontinuities. The FRAC Group is used to record the spacing of the
 discontinuities in each set or zone.
 - The start and end of each set or zone of discontinuities of similar nature is given in DISC_TOP and DISC_BASE, either as depth in a borehole, or as distance from the start of the traverse along a scanline. The start and end of each set or zone of discontinuities with a similar spacing is given in FRAC_TOP and FRAC_BASE. Normally the "nature" and "spacing" zones will coincide, and therefore DISC_TOP and DISC_BASE will be the same as FRAC_TOP and FRAC_BASE.
 - DISC_NUMB is left blank when logging discontinuity sets or zones.
 - Each discontinuity set or zone must be given a unique set reference number in FRAC_SET. For
 example, joint sets may be numbered J1, J2, J3 etc, bedding discontinuities as B1, B2 etc. The use of
 FRAC_SET provides the link between the DISC and FRAC Groups.
 - The typical orientation and nature of each discontinuity set or zone is reported using the remaining fields in DISC.
 - The spacing of the discontinuities within each discontinuity set or zone is reported in the FRAC Group, giving the minimum, average (typical), and maximum spacing in mm of the fractures in that set or zone, using the FRAC_IMIN, FRAC_IAVE and FRAC_IMAX fields. Alternatively, the average (typical) number of fractures per metre can be given in FRAC_FI.

18 Reporting in situ tests not carried out in a borehole or trial pit

In situ tests are mostly carried out in boreholes or trial pits, but this is not always the case, and some tests can be carried out on their own, from the surface, without a borehole or trial pit.

- a) The tests that can be carried out from the surface are:
 - In situ CBR test reported in Group ICBR
 - In situ density test reported in Group IDEN
 - In situ redox test reported in Group IRDX
 - In situ resistivity test reported in Group IRES
 - In situ vane test reported in Group IVAN

Static cone and dynamic probe tests are treated in the same way as boreholes.

- b) Where these tests are carried out from the surface the following reporting procedure should be used:
 - Each test should be given its own unique HOLE_ID.
 - In the HOLE Group the HOLE_ID of each test is given, together with its co-ordinates and ground level. Under the HOLE_TYPE Heading the abbreviation given in the 'pick' list in <u>Appendix 1</u> should be used. For example:

```
"**HOLE"

"*HOLE_ID", "*HOLE_TYPE", "*HOLE_NATE", "HOLE_NATN", "*HOLE_GL"

"<UNITS>","","m","m","m"

"ID124","IDEN","521356","176478","34.6"

"ID125","IDEN","521364","176459","38.3"

"IC063","ICBR","521357","176477","34.5"
```


• The test results are reported in the appropriate Group as normal, but using the unique HOLE_ID defined in the HOLE Group. For example:

```
"**IDEN"

"*HOLE_ID", "*IDEN_DPTH", "*IDEN_IDEN", "*IDEN_MC", "*IDEN_REM"

"<UNITS>", "m", "Mg/m3", "%", ""

"ID124","0.00","1.75","17","Sand replacement. Test at ground level"

"ID125","0.00","1.73","15","Sand replacement. Test at ground level"
```

19 Transfer of monitoring data

The addition of the groups originally defined in AGS-M (ref CIRIA Project Report 82, 2002) permit the transfer of sufficient information to allow the receiver to recreate the factual engineering plots that are included in the paper version of the instrumentation monitoring report. Most of these plots will show the variation with time of a physical parameter or a geochemical determinand. The raw instrument readings that the data provider has taken in the field, or the calibration factors that have been applied to the raw readings, are not transferred as part of the AGS Format. Similarly, interpreted information which has been derived from the factual data is not transferred by the AGS Format. However, the Format is flexible and data outside the scope of the Format may be transferred as associated files which are referenced in the AGS data, if this is agreed between the data provider and receiver (Appendix 4).

The following types of monitoring data are defined, and may be transferred using the AGS Format or as associated files as indicated below:

- General information about the project. Given in the PROJ Group.
- Location of each instrument reference point. Given in the HOLE Group.
- Details of each monitoring point. Given in the ?MONP Group.
- The readings (after the application of any calibrations or corrections) of physical parameters from each monitoring point. Given in the ?MONR Group.
- The results of in situ measurements of geochemical determinands (after the application of any calibrations or corrections) from each monitoring point. Given in the ?ICCT Group.
- The raw instrument readings (prior to the application of any calibrations or corrections) of physical
 parameters or geochemical determinands from each monitoring point. These are not given in the AGS
 Format, but may be included in an attached file referenced from the FILE_FSET in either ?MONR or
 ?ICCT with the associated calibrated result.
- Calibration information or initial base readings for the instrument which are used to obtain the corrected readings. These are not given in the AGS Format, but may be included in an attached file referenced from the ?FILE_FSET in ?MONP or HOLE, depending on the instrument type. For instruments where there are single entries in ?MONP the data is referenced from ?MONP eg a single earth pressure cell. For installations where multiple monitoring points are defined in ?MONP, each with their own calibration, the data is referenced in ?MONP, eg a series of tiltmeters up a bridge abutment. For installations where multiple monitoring points are defined in ?MONP, but they combine to act as one instrument, then the data is referenced in HOLE eg a manually read borehole inclinometer.
- Calibration information for a readout unit or measurement gauge which is used to read many
 installations across the project. This is not given in the AGS Format, but may be included in an attached
 file referenced from the FILE_FSET in PROJ.

20 Reference points, monitoring points and key fields

The AGS Format makes the distinction between reference points and monitoring points as follows:

- The **monitoring point** is the precise location at which a reading is taken. It may be a single instrument such as a precise levelling point, or it may be an individual location within a long instrument, such as a particular depth within a borehole inclinometer at which readings are taken.
- The reference point is the general location of the instrument that has been surveyed in with coordinates and a level. For example, in the case of an instrument installed in a borehole, the reference point would be the top of the borehole. For a set of tiltmeters installed up a bridge pier, the reference point may be the base of the pier. For a precise levelling point the reference point and the monitoring point locations are likely to be the same.

Each reference point can have one or more monitoring points. But each monitoring point must have only one reference point.

The monitoring points are related to their respective reference point by an off-set distance. For an instrument in a borehole the off-set distance is the depth down the borehole to the monitoring point (or points). For a set of tiltmeters installed up a bridge pier the off-set distance is the distance up the pier to the tiltmeter from the reference point at the pier base. For a precise levelling point, where the reference point and the monitoring point are the same, the off-set distance is zero.

The position of any monitoring point should ideally be uniquely defined by a combination of its reference point and off-set distance; these are the main Key Fields which uniquely identify the instrument, and are used in the to make the link between the instrument details and its associated readings. If it is not possible to uniquely identify an instrument by these two Key Fields alone, then the ?MONP_ID Key Field may be added to produce a unique combination of the three Key Fields.

The reference point name is given in HOLE_ID, and the location of the reference point is defined by its nominal co-ordinates and level given in the HOLE_NATE, HOLE_NATN and HOLE_GL fields in the HOLE Group. The HOLE_ID is repeated in the ?MONP, ?MONR and ?ICCT Groups. If the reference point moves (for example a borehole installed in an active landslip) the nominal co-ordinates and level given in HOLE should not be changed. To record the movement create a monitoring point at the top of the borehole and record the relative movement or absolute position with time using the appropriate fields in ?MONR.

The off-set distance between the reference point and the monitoring point is given in ?MONP_DIS in the ?MONP Group, and is repeated in the ?MONR and ?ICCT Groups with the readings. ?MONP_DIS is a Key Field and must always be included. If the off-set distance is zero, then ?MONP_DIS must be given as 0.

?MONP_ID may be the instrument serial number, or some other reference, and is optional if the instrument can be uniquely identified by a combination of its reference point and off-set distance alone. If the instrument can not be uniquely identified without ?MONP_ID then it must be included in the ?MONP, ?MONR and ?ICCT Groups.

21 Instrument orientations and sign conventions

Where a reference point relates to a line of monitoring points, the orientation of the line is given in the HOLE Group. For example:

- An inclinometer installed in a vertical borehole: the inclination given in HOLE_INCL is 90, the orientation given in HOLE_ORNT is NA (not applicable).
- An extensometer installed at an angle of 45 degrees upwards on a bearing to the east in the roof of a tunnel: the inclination in HOLE_INCL is -45 (down is +ve, up is -ve for HOLE_INCL), and the orientation given in HOLE_ORNT is 090 (bearings are given as three digits).
- A set of strain gauges installed along a horizontal excavation prop orientated north-south: HOLE_INCL is 0 and HOLE_ORNT is 180.

The orientation of the reading axis of a monitoring point is given in the ?MONP Group. If the monitoring point has more than one reading axis, the orientation of each axis is given in ?MONP. For example:

- A horizontally mounted tiltmeter on the east-west wall of a building: the bearing of the measuring axis given in ?MONP_BRGA is 090 and the inclination of the axis given in ?MONP_INCA is 0.
- A strain rosette with two reading axes, glued on to the vertical side of an east-west trending excavation
 prop: the bearing of the horizontal measuring axis is 090 (given in ?MONP_BRGA), and of the vertical
 axis is NA (not applicable, given in ?MONP_BRGB). The inclination of the horizontal axis is 0 (given in
 ?MONP_INCA) and of the vertical axis is 90 (given in ?MONP_INCB).

The AGS Format does not define any sign conventions for instrument readings reported in ?MONR. The sign conventions for each measuring point must be defined in ?MONP. For some instruments a sign convention is not relevant, if the reading can only ever be positive. For monitoring points with more than one axis, the sign convention must be given for each axis. The sign convention is defined in words and must be unambiguous. The sign convention, orientation and inclination of the reading axis must be mutually compatible. For example:

- A horizontally mounted tiltmeter on the east-west wall of a building: with a reading axis bearing 090 and an inclination of 0, the sign convention (given in ?MONP_RSCA) may be "Clockwise tilt down to the east is +ve".
- A precise levelling point installed on the side of a building with a reading axis bearing of NA, and an inclination of 90, the sign convention (given in ?MONP_RSCA) may be "Displacement up is +ve".

Instruments for in situ geochemical measurements are omni-directional and the measured values can only be +ve, therefore the bearing, inclination and reading sign convention in ?MONP are not applicable (NA).

22 ?MONP and ?MONR Examples

The following examples illustrate how to report the installation details and readings of physical parameters for common instruments using the ?MONP and ?MONR Groups. General concepts are not repeated in subsequent examples. Detailed, worked examples for most common instrument types are given on the AGS web site at http://www.ags.org.uk.

a) Total station survey point on a building

- The reference point and the monitoring point locations are the same.
- The reference point ID is given in HOLE_ID.
- The off-set of the monitoring point from the reference point is zero and is given as 0 in ?MONP_DIS.
- The combination of HOLE_ID and ?MONP_DIS uniquely define the survey point, so no ?MONP_ID is required, and may be left blank.
- The co-ordinates and level of the reference point given in HOLE (in HOLE_NATE, HOLE_NATN and HOLE_GL) may be the initial precise readings on the point, or may be rounded readings.
- The co-ordinates and level of the reference point may additionally, or alternatively, be given to a local grid and datum in HOLE using HOLE_LOCX, HOLE_LOCY and HOLE_LOCZ.
- The orientation and inclination of the reference point in HOLE_ORNT and HOLE_INCL are not relevant, and are given as NA (Not applicable).
- Photographs of the reference point may be given as an associated file and referenced in FILE_FSET in HOLE.
- The date that the survey point was installed is given in ?MONP_DATE.
- The HOLE_TYPE is INST to indicate Instrument.
- The type of instrument is given using the pick list code TS for Total station survey point in ?MONP_TYPE.

 If the readings are reported as Easting, Northing and Level then the bearings and inclinations of the measurement axes are:

```
?MONP_BRGA = 090 (ie Eastings)
?MONP_BRGB = 000 (ie Northings)
?MONP_BRGC = NA (ie Level, bearing is Not Applicable)
?MONP_INCA = 0 (ie Eastings, horizontal axis)
?MONP_INCB = 0 (ie Northings, horizontal axis)
?MONP_INCC = 90 (ie Level, vertical axis)
```

- If absolute readings of Easting, Northing and Level are being reported, then there are no sign conventions and ?MONP RSCA, ?MONP RSCB and ?MONP RSCC are NA (Not applicable).
- Absolute readings of Easting, Northing and Level are reported in ?MONR_EAST, ?MONR_NRTH and ?MONR_LEV.
- If relative displacements from an initial base reading are being reported, then the sign conventions for displacements in each axis must be given, for example:

```
?MONP_RSCA = Displacement to East +ve.
?MONP_RSCB = Displacement to South +ve
?MONP_RSCC = Displacement up +ve.
```

- Relative displacements would be reported in ?MONR_DSPA, ?MONR_DSPB and ?MONR_DSPC.
- The date and time of every set of readings must be given in ?MONR_DATE and ?MONR_TIME. The date is always given in the format dd/mm/yyyy eg 05/12/2001, the following formats are not acceptable 5/12/2001, 05/12/01, 5 Dec 2001 or 12/05/2001. The time is always given to the 24 hour clock in the format hhmmss eg 104500, the following formats are not acceptable 1045, 10:45:00, 1045am.

b) Bi-axial tiltmeter on a building

- If the tiltmeter is installed on its own near ground level, then the reference point and monitoring point locations will be the same, and ?MONP_DIS will be zero. Inclination and orientation of the reference line (HOLE_INCL and HOLE_ORNT) are not relevant.
- The HOLE_TYPE is INST to indicate Instrument.
- The instrument type given in ?MONP_TYPE is TMB.
- The serial number of the tiltmeter can be given in ?MONP_ID, but it is not required to uniquely define the instrument, and so may be left blank.
- The calibration details of the instrument can be given as an associated file and referenced in FILE FSET in ?MONP.
- If one axis of the tiltmeter is horizontal, aligned east-west, and the second axis is horizontal, aligned north-south, the bearing, inclination and sign conventions given in ?MONP may be as follows:

```
?MONP_BRGA = 090
?MONP_BRGB = 180
?MONP_INCA = 0
?MONP_INCB = 0
?MONP_RSCA = Clockwise rotation down to the east is +ve
?MONP_RSCB = Anticlockwise rotation down to the south is +ve
```

The readings will be reported using ?MONR_ANGA and ?MONR_ANGB.

c) Manually read inclinometer in a borehole

- The reference point is the top of the borehole. The reference point ID is the borehole number. There are multiple monitoring points, one at each depth down the inclinometer at which readings are taken. Each monitoring point is identified by its depth below ground level, given in ?MONP_DIS. ?MONP_ID is not relevant and is left blank.
- The HOLE_TYPE given in HOLE is CP for cable percussion borehole.
- The co-ordinates and ground level of the top of the borehole are given in HOLE.
- The instrument type given in ?MONP_TYPE is ICM for inclinometer manual.
- The inclination and orientation of the borehole are given in HOLE. If the borehole is vertical HOLE_INCL is 90 and HOLE ORNT is NA.
- Each depth at which readings are taken in the inclinometer is considered to be a separate monitoring point and must be defined in ?MONP, even though the orientations, inclinations and reading sign conventions will be the same for every point. The nominal bearings of the keyways are given in ?MONP_BRGA and ?MONP_BRGB. ?MONP_BRGC is not applicable. The inclination of the measuring direction for both keyways is horizontal (ie 0), as the resultant horizontal displacements are reported. The reading sign convention for the two keyway directions must be stated. An example partial data set for ?MONP would be as follows:

?HOLE_ID	?MONP_DIS	?MONP_BRGA	?MONP_BRG	?MONP_INCA	?MONP_INCB	?MONP_RSC	?MONP_RSC
			Α			Α	В
BH10	6.00	100	190	0	0	Towards east	Towards
						+ve	south
							+ve
BH10	7.00	100	190	0	0	Towards east	Towards
						+ve	south
							+ve
BH10	8.00	100	190	0	0	Towards east	Towards
						+ve	south
							+ve

- The readings, given as displacements in mm from the base reading at each depth, are reported in ?MONR_DSPA and ?MONR_DSPB, observing the sign conventions given in ?MONP.
- A set of base readings will be taken for each inclinometer installation which define the initial shape of the
 tube in the ground and which are then used in the calculation procedure to determine the incremental
 displacement for each subsequent set of readings. These base readings may be considered as
 calibration data for the installation and are therefore not reported in the AGS Format. If they are required
 they may be given as an attached file and referenced in the FILE FSET of the HOLE Group.
- The raw instrument readings of the angle of the measuring torpedo in the keyways at each depth are not
 reported in the AGS Format. Similarly, the intermediate calculated readings of absolute shape of the
 inclinometer installation at each reading date are not reported. The only results reported are the final
 relative displacements after application of the calibration factors and subtraction of the base readings.
- If spiral twist is measured it provides additional detail on the configuration of the installation, and is required by the data receiver to fully understand the incremental displacement data ie although the keyways may be nominally aligned at 100/190 degrees at the surface, they may be rotated to 150/240 degrees at 50m depth. Spiral twist information is therefore part of the instrument definition, and is not calibration data. It is reported in ?MONP by giving the precise, rather than the nominal, keyway bearing at each measurement depth in ?MONP_BRGA and ?MONP_BRGB.

d) Piezometer in a borehole

- The reference point is the top of the borehole, and the reference ID is the borehole number.
- The off-set from the reference point given in ?MONP_DIS is the depth below ground level to the piezometer tip; this allows multiple piezometers in a borehole to be uniquely identified.
- The combination of HOLE_ID and ?MONP_DIS uniquely define the piezometer, so no ?MONP_ID is required, and may be left blank.
- The top and bottom of the piezometer response zone (sand filter pocket) are given as depths below ground level in ?MONP TRZ and ?MONP BRZ.
- The HOLE_TYPE is CP for cable percussion borehole.
- The instrument type is given as SPIE for a standpipe piezometer in ?MONP TYPE.
- The orientation and inclination of the borehole are given in HOLE_ORNT and HOLE_INCL.
- Bearing and inclination of the piezometer are not relevant as the instrument is omnidirectional, so ?MONP_BRGA and ?MONP_INCA may be left blank or given as NA.
- The reading sign convention is only relevant with piezometers that can measure negative heads, in which case ?MONP_RSCA would be "Positive head is +ve".
- The readings are reported as either depth to water from reference point datum (ie depth below ground level) in ?MONR WDEP or as head of water above tip level in ?MONR WHD.

e) Slip indicator in a borehole

- The readings are reported in ?MONR using fields ?MONR_DSTA and ?MONR_DSTB. The depth below ground level that the top of the bottom rod gets stopped is reported in ?MONR_DSTB, and the depth below ground level that the bottom of the top rod gets stopped is reported in ?MONR_DSTA.
- The length of the top rod used is reported in ?MONR_GAUG; so the results of using several top rods of different lengths can be reported.
- The monitoring point is defined as at the base of the slip indicator tube, and is given as the depth of the
 installation in ?MONP_DIS. The combination of HOLE_ID and ?MONP_DIS uniquely define the survey
 point, so no ?MONP_ID is required, and may be left blank.

f) Set of strain gauges on an excavation prop

- The reference point is located at the end of the prop, and the set of strain gauges may all be given the same HOLE ID.
- The strain rosettes on the side and top of the prop are both at the same distance from the reference point, given in ?MONP_DIS.
- The combination of HOLE_ID and ?MONP_DIS does not uniquely identify each strain rosette, therefore
 each rosette must additionally be given a monitoring point identifier in ?MONP_ID to make the
 combination of HOLE_ID, ?MONP_DIS and ?MONP_ID unique. The ?MONP_ID may simply be "Top"
 and "Side", or "A" and "B", or some project specific referencing system.
- The strain measurements are reported after they have been resolved to the measurement axes defined in ?MONP_BRGA, ?MONP_BRGB, ?MONP_BRGC, ?MONP_INCA, ?MONP_INCB and ?MONP_INCC, and are reported using the sign conventions defined in ?MONP_RSCA, ?MONP_RSCB and ?MONP_RSCC. The raw readings from each strain arm in each rosette are not reported in AGS.

g) Set of crack monitoring pins manually measured by a Demec gauge

A set of three or four pins are installed to straddle a crack. The distance between pairs of pins is
manually measured by a Demec gauge and this data is used to calculate the displacement across the
crack, and the shear displacement along the crack. The orientation of these two axes of displacement
are defined in ?MONP. For a horizontal crack in a north-south trending, vertical wall the ?MONP entries
would be as follows:

```
?MONP_BRGA = NA
?MONP_BRGB = 180
?MONP_INCA = 90
?MONP_INCB = 0
?MONP_RSCA = Crack opening +ve
?MONP_RSCB = Right lateral shear +ve
```

- The displacement and shear displacement would be reported in ?MONR DSPA and ?MONR DSPB.
- The readings of distance between pairs of pins is raw data and is not reported in AGS. If this information is required it may be included as an attached file referenced in the FILE_FSET of ?MONR.

23 In situ gas and geochemical monitoring

If samples of soil, water or gas are taken in the field for subsequent geochemical analysis in the laboratory, then the sampling and testing may be fully reported using the HOLE, SAMP and CNMT Groups. However, if testing is carried out in situ and no samples are taken, then the results are reported as follows:

- The location of the reference point is defined using the various Headings in the HOLE Group.
- The details of the monitoring point installation are given in ?MONP. This applies to both fixed installations and readings taken with a handheld instrument.
- The results of physical readings such as flow, temperature and pressure, are given in ?MONR.
- The results of chemical readings are given in ?ICCT. The ?ICCT Group uses the same concepts and
 pick list items for reporting chemical test results as does the CNMT Group, however, instead of sample
 details it includes date and time Headings, and links to the monitoring point definitions given in ?MONP.

Examples

a) Gas monitoring well

A series of gas monitoring wells at a landfill site are periodically monitored for gas flow, pressure and composition using a handheld readout unit. Barometric pressure is also recorded.

- Each well is given a borehole number in HOLE_ID. The reference point is ground level. The monitoring
 point is the base of the response zone of the well screen, and therefore ?MONP_DIS and ?MONP_BRZ
 are the same. ?MONP_TRZ gives the top of the response zone of the well screen. The instrument
 ?MONP_TYPE is GMP for gas monitoring point. If the installation is also used for groundwater
 monitoring then the instrument ?MONP_TYPE is GMP+GWMP.
- The installation is omni-directional therefore bearing and inclination are not relevant in ?MONP. The
 parameters being measured can only be +ve, and therefore the reading sign convention in ?MONP is
 also not relevant.
- Each set of readings is given a consistent pair of date and time values ie the time reading is nominal, rather than precise to the second. ?MONR_TIME and ?ICCT_TIME (as well as ?MONR_DATE and ?ICCT_DATE) must be identical for a group of readings in a single installation which are to be considered as a set.
- The gas pressure and flow from the installation are recorded in ?MONR_PRES and ?MONR_FLOW respectively.

 The gas composition is recorded using the relevant ?ICCT Headings. The pick list codes for ?CNMT_TYPE and ?CNMT_TTYP are given in <u>Appendix 1</u>. An example partial set of readings is given below:

?HOLE_ID	?MONP_DIS	?ICCT_DATE	?ICCT_TIME	?CNMT_TYPE	?CNMT_TTYP	?ICCT_RESL	?ICCT_UNIT	?ICCT_METH
GW02	10.50	21/06/2001	143500	GMETH	GAS	64.23	%vol	Handheld infrared gas analyzer
GW02	10.50	21/06/2001	143500	GOX	GAS	33.82	%vol	Handheld infrared gas analyzer
GW02	10.50	21/06/2001	143500	GCARD	GAS	0.12	%vol	Handheld infrared gas analyzer

• If barometric pressure is recorded at the site each day that readings are taken, then a monitoring point is defined for the barometer with its own HOLE_ID. The readings are reported in ?MONR_PRES.

b) Water gauging station at a tunnel outlet

An automatic data logger is used to record every 12 hours the water flowing out of a tunnel drainage system. The flow rate is determined by an instrumented float on a v-notch weir and the pH and conductivity are measured by electrical probes.

- The reference point is the weir, and its location is defined in HOLE. The reference point and monitoring point are the same, therefore ?MONP DIS is zero.
- HOLE_TYPE is INST, and ?MONP_TYPE is GWMP.
- In ?MONP the bearing, inclination and reading sign convention are not relevant.
- The flow over the weir is reported in ?MONR_FLOW, expressed as I/s.
- The pH and conductivity are reported in ?ICCT with ?CNMT_TYPE of PHS and CONDW respectively, and with ?CNMT_TTYP of WATER.
- The raw electrical output from the transducers is not reported. Similarly, the float level on the weir is not reported, nor are the calibration or conversions factors by which the electrical outputs are converted to the reported readings.

24 Time related remarks

If there is a notable occurance that effects a particular exploratory location or measurements then it is best reported as a remark in the appropriate group/heading, for example HOLE_REM or DREM, or associated with the particular data that is affected.

If an incident affects a particular instrument or a particular data reading in a single instrument then it is best reported as a remark in ?MONR_REM on the date and time at which it occurred or was noted, and associated with the particular reading that is affected eg 'Installation vandalised. Cover damaged'.

If there is an event on the site that is of a more general nature that may affect the results on a number of instruments then this can be reported in ?TREM as a time related remark. ?TREM can be used to report a site diary of key events eg 'Heavy rain for 2 days, site flooded'. To associate these remarks to site locations other than exploratory holes, additional HOLE_IDs will need to be defined.

25 User defined Headings and Groups

The AGS Format contains Groups and Headings covering all the common investigation techniques and tests. However, if you find that you have carried out some work that is not covered by the Format it is possible to customise the Format to include your additional requirements.

- a) Any additions you make should use these guidelines:
 - If the AGS Format already includes the Headings you want to use, but you would prefer them to be in a
 different Group, for example, because your laboratory test results spreadsheet includes both index test
 results and chemical test results. Do not change the AGS Format to fit your software. Instead, change
 your software, or write a conversion routine to output the data in correct AGS Format.
 - If you need to add some additional Headings, try to put them into an existing AGS Group, rather than create a new Group for them.
 - If your new Headings do not readily fit into an existing Group, then you may create a new Group. Follow the same structure as the majority of the existing Groups in the AGS Format. Do not use the structure of the CNMT Group, which is different from all the other AGS Groups, and requires specific program code in the Receivers software to handle it.
 - If you are adding Groups to handle a test that has both an overall test result, and detailed data for multiple points within the test, use a linked pair of groups (see Section 5 above).
 - Any new Headings or Groups created should be specifically agreed between the Provider and Receiver.
 - Do not create a new Group which only has PROJ_ID as the Key Field. Instead, add new Headings to the PROJ Group.
 - Do not create a new Group which only has HOLE_ID as the Key Field. Instead, add new Headings to the HOLE Group.
 - Do not create a new Group which only has HOLE_ID, SAMP_TOP, SAMP_REF and SAMP_TYPE as the Key Fields. Instead, add new Headings to the SAMP Group.
 - Do not create a new Group which only has ?HOLE_ID, ?MONP_DIS and ?MONP_ID as the Key Fields. Instead, add new Headings to ?MONP Group.
 - Do not create a new Group which only has ?HOLE_ID, ?MONP_DIS, ?MONP_ID, ?MONR_DATE and ?MONR_TIME as the Key Fields. Instead, add new Headings to ?MONR Group.
 - Do not create a new Group for in situ chemical test results. Instead add new Headings to ?ICCT.
 - If the new Group you propose to create has the same Key Fields as an existing Group, consider whether it is possible to add new Headings to the existing Group, rather than creating a new Group.
- b) When creating a new Group, the most important aspect is to get the right Key Fields for the Group. Most new Groups should fit into one of the following four formats:
 - In situ test results should have Key Fields of HOLE_ID and a depth field.
 - Laboratory test results should have Key Fields of HOLE_ID, SAMP_TOP, SAMP_REF, SAMP_TYPE, SPEC_REF and SPEC_DPTH.
 - In linked pairs of Groups for laboratory test results the general Group should have Key Fields of HOLE_ID, SAMP_TOP, SAMP_REF, SAMP_TYPE, SPEC_REF and SPEC_DPTH. In the Group for the detailed test results the Key Fields should be HOLE_ID, SAMP_TOP, SAMP_REF, SAMP_TYPE, SPEC_REF, SPEC_DPTH plus test stage number.

- In linked pairs of Groups for monitoring readings, the Group for the instrument installation information should have Key Fields of HOLE_ID, instrument depth and/or reference number. In the Group for the detailed monitoring readings the Key Fields should be HOLE_ID, instrument depth and/or reference number plus date and time.
- If your new Group does not satisfy one of the above patterns of Key Fields, then review your database structure very carefully, it should probably be changed.
- c) Before adding a new Heading or Group consult the Discussion Forum of the AGS web site at http://www.ags.org.uk, to see if anybody else has already suggested a solution to your requirements. If not, then add details to the Discussion Forum of what you propose to do. The AGS Format committee will consider all suggestions posted in the Discussion Forum when preparing the next revision of the AGS Format.

See Appendix 5 for further details on the AGS web site.

- d) To add a new Heading to an existing Group.
 - Define the new Heading in the DICT Group. Indicate whether the new field is a KEY field or a COMMON field. For example, to add a new field for corrected SPT N value to the ISPT group, create the following line in the DICT Group.

```
"**DICT"

"*DICT_TYPE", "*DICT_GRP", "*DICT_HDNG","*DICT_STAT", "*DICT_DESC", "*DICT_UNIT",

"*DICT_EXMP","?DICT_PGRP"

"HEADING","ISPT_VISPT_CORN","COMMON","Corrected N value"," ","20",""
```

 Add the new Heading to the existing Group, together with its data. The new Heading contains the prefix *?

```
"**ISPT"

"*HOLE_ID", "*ISPT_TOP", "*ISPT_SEAT", "*ISPT_MAIN", *ISPT_NPEN", "*ISPT_NVAL",

"*?ISPT_CORN"

"<UNITS>","m","","","mmm","",""

"BH1A","2.00","10","14","450","14","14"

"BH1A","3.00","13","21","450","21","18"

"BH1A","4.00","8","18","450","18","16.5"

"BH1A","4.00","16","32","450","32","23.5"
```

- e) To add a new Group and Headings.
 - Define the new Group and its new Headings in the DICT Group. For example, to define a new Group for plate loading test results.

```
"**DICT"

"*DICT_TYPE", "*DICT_GRP", "*DICT_HDNG", "*DICT_STAT","*DICT_DESC", "*DICT_UNIT",

"*DICT_EXMP","?DICT_PGRP"

"GROUP","PLTT","","","Plate loading test results","","","HOLE"

"HEADING","PLTT","HOLE_ID","KEY","Test location number","","PLT01",""

"HEADING","PLTT","PLTT_DPTH","KEY","Test depth","m","2.55",""

"HEADING","PLTT","PLTT_DIAM","COMMON","Plate diameter","m","0.95",""

"HEADING","PLTT","PLTT_INTE","COMMON","Initial loading modulus","MN/m2","55.6",""

"HEADING","PLTT","PLTT_UNRE","COMMON","Unload/reload modulus","MN/m2","127.4",""

"HEADING","PLTT","PLTT_REM","COMMON","Notes","","Maintained load test.",""
```


• Create the new Group. The Group name contains the prefix **? and add the new Headings with the corresponding data. Each new Heading contains the prefix *?

```
"**?PLTT"

"*?HOLE_ID", "*?PLTT_DPTH", "*?PLTT_DIAM", "*?PLTT_INTE", *?PLTT_UNRE", "*?PLTT_REM"

"<UNITS>","m","m","MN/m2","MN/m2",""

"PLT15","0.50","0.95","4.76","11.8","Maintained load test"

"PLT15","1.60","0.95","62.6","178","Maintained load test"

"PLT15","3.40","0.95","137","279","Maintained load test"
```

26 Text formatting, fonts and special characters

a) Text formatting

The AGS Format is designed to transfer only the geotechnical and geoenvironmental data. It is not intended to transfer any formatting of the data. If your data includes any formatting it will either be lost, or could cause problems to the Receiver. To minimise such problems use the following guidelines.

- When entering data into your software, do not add any formatting in the data. Let your software control formatting of the output.
- Do not use Tabs to horizontally position your data.
- Do not use multiple spaces to horizontally position your data.
- Do not use multiple carriage returns to vertically position your data.
- · Do not embed columns or tables in your data.
- Ensure that your software does not output any formatting or format control codes when creating an AGS Format file.

b) Fonts

The AGS Format does not transfer any font information. Use the following guidelines:

- When entering data into your software do not add any font information, let your software control fonts within its in-built output formatting.
- Do not use bold, italic or underline in your data.
- Do not use superscripted or subscripted numbers. For example, use MN/m3 and CaCO3.
- When entering data in Scientific Notation, do not use 10 to the power something, but use the exponent format eg 6.1E-6.
- Ensure that your software does not output any font information or font control codes when creating an AGS Format file.

c) Special characters

Rule 1 of the AGS Format Rules states that the extended ASCII character set must not be used. The extended character set includes characters such as accented letters, Greek letters and symbols. The way that extended characters are displayed in your software may depend on the language setting of your operating system, the code page set up, the font you are using and your printer set up. The results can be unpredictable, with either the wrong character being displayed, or no character being shown. The Rules therefore require you to avoid the extended ASCII character set. Some suggestions follow:

- When typing an angle, do not use the degree symbol, but use "deg" instead; eg 45 deg.
- When entering units do not use the superscripted 2 or 3, but use a normal 2 or 3 instead; eg kN/m2.

- When entering units do not use the Greek mu symbol for 1/1000000, but instead use the abbreviation "u"; e.g. ug/kg.
- Do not use accented letters.
- Do not use the special mathematical or copyright symbols, but replace them with composites made from the standard keyboard symbols, or with words.

E.g. Greater than or equal to: >=
Plus or minus: +/Approximately: approx
Copyright: (c)
Trade Mark: (TM)
Registered TradeMark: (R)

• Do not use any characters or symbols that are not on your keyboard or that require you to use an "Insert symbol" option in your software.

27 Declaration of AGS Format data files

The AGS wishes to encourage data Providers to declare on their paper reports when the data contained within the report is also available in AGS Format. This will become of considerable benefit to third party Receivers, who are not the primary Receivers that commissioned the report. To this end the AGS provides the following AGS Format logo to Registered Users of the Format.

The logo should be used as follows:

- The logo should be included in a prominent position on the front cover, or inside front cover, of the Factual Report to indicate that the data contained within the report has also been provided to the primary Receiver in AGS Format.
- The logo should also be included on every log within the report, as logs are frequently separated from the main text of the report.
- The logo is only to be used by Registered Users of the Format. A list of Registered Users is given on the AGS web site at http://www.ags.org.uk.

APPENDIX 7

Summary of Amendments Contained within AGS 3.1

The main additions within this revision of the AGS Format are

New groups. New groups have been added for the recording of:

- Backfill information ?BKFL
- Depth Related Drilling Information ?HDPH
- In situ Contamination testing ?ICCT
- In situ FID readings -?IFID
- In situ PID readings ?IPID
- Monitor Points ?MONP
- Monitor Point readings ?MONR
- Time related remarks ?TREM

?MONP, ?MONR, ?ICCT and ?TREM have been appended from the AGS-M documentation (ref CIRIA Project Report 82, 2002).

New fields. New fields have been added to the following groups:

- PROJ
- CBRG
- CBRT
- CLSS
- CNMT
- CONG
- CONS
- DICT
- DPRG
- DREM
- FILE
- HDIA

- HOLE
- ICBR
- IPRM
- IDEN
- IPRM
- IRDX
- IRES
- ISPT
- IVAN
- SAMP
- SHBT
- TRIX

Additional fields have also been added in PROJ to include the information traditionally transmitted on the media labelling (<u>Appendix 3</u>) within the AGS format data file when transmitted by email.

Pick lists. A standard pick list has been supplied for the geology legend codes (GEOL_LEG) field. This field has historically caused problems as it is often coded but has not had a standard set of codes before now. Additions have also been made to the pick list items for the following fields:

- ?BKFL LEG
- CNMT_TTYP
- ?FILE_DOCT
- HOLE_TYPE
- ?MONP TYPE
- ROCK_PLTF
- SAMP TYPE

New unit definitions have also been added.

Codes. Additional determinand codes (CNMT TYPE) have been added to the code table (Appendix 1)

Notes for Guidance. Additional notes for guidance have been added amoungst the group details in the main text to describe the application of the new headings and link to other sections of the document that provide further information. <u>Appendix 6</u> has also been updated to reflect field changes.

AGS Website. The AGS data format website (http://www.ags.org.uk) has been updated to display all the additions in this document together will the appropriate guidance notes. The website also allows the visitor to view the field version history and an appropriate discussion threads that have contributed to the changes.

Corrections made post initial publication, April 2005

- **?ICCT** removed key field markings against ?ICCT_UNIT and ?ICCT_METH and added ?ICCT_ULIM to maintain compatibility with CNMT group, page 34.
- **?IFID** added ?IFID_TESN as key field and added ?GEOL_STAT to maintain consistency with other in situ test data groups, page 35.
- **?IPID** added ?IFID_TESN as key field and added ?GEOL_STAT to maintain consistency with other in situ test data groups, page 37.
- ppmv parts per million volume used in example of ?IFID_RES added to UNITS listing in Appendix 1.
- Change to description of HOLE_ID throughout document marked as Rev.
- Revised examples for ?BKFL_LEG, ?CBRT_REM, ?CLSS_REM, CONG_REM and ?TRIX_CU.
- Added missing Del flags to deleted fields in INST and STCN.
- Removed reference to a 'SPEC_TYPE' field in Appendix 6 discussion on user defined abbreviations (Section 7).
- Removed duplicate entries for HCARS and PAHS from CODE listing in Appendix 1.
- Amended Appendix footers to AGS Edition 3.1
- Corrected spelling errors on ABBR table.

